

Load Testing At Scale

Aaron Seigo – aseigo@mykolab.com - 12/2017

mailto:aseigo@mykolab.com

Who is this fella?

Initial release: Haida Gwaii, Canada (up by Alaska), 1975
Software developer: 1992
Linux user: 1994
Free software career: 1997
KDE: 2000
Free Software Hippy: 2004
Currently: Nomoko AG

Load Testing At Scale

Aaron Seigo – aseigo@mykolab.com - 12/2017

mailto:aseigo@mykolab.com

The Bigger The System …

What to measure?

User sessions
● Completes a session before starting the next
● Limiting is based on number of users
● Built to emulate interaction

Requests
● Launches as many requests in parallel as allowed
● Built to emulate load

How to measure?

● Quantifiable
● Repeatable
● Scalable
● Automation friendly

The Heroes Of Our Story

The Heroes Of Our Story

MZBENCH

basho_bench

They all have something in common…

They all have something in common…

Erlang … ?

Yes, Erlang!

● Has a 30+ year history
● Majority of mobile data processed by Erlang

… and its supermodel child

Why Erlang / Elixir?

● Concurrency and clustering built into the language

input

|> Stream.chunk_every(3, 1, :discard)

|> Flow.from_enumerable()

|> Flow.partition()

|> Flow.reduce(fn |> %{} end,

 fn v, acc → Map.update(acc, v, 1, &(&1 + 1)) end)

|> Flow.reject(fn {_, 1} |> true

 _ |> false end)

Why Erlang / Elixir?

● Concurrency and clustering built into the language

Why Erlang / Elixir?

● Concurrency and clustering built into the language

Why Erlang / Elixir?

● Resilience and durability are built into the language

Why Erlang / Elixir?
● Highly predictable latency

– Pre-emptive multitasking
– Long-running uninteruptables (>1ms) scheduled separately

● Easy to extend
– Hot code loading, even over the network!
– Java, C/C++, Rust, Python, Ruby …

● Fantastic APIs for networking and protocol parsing

Why Erlang / Elixir?

● Fantastic developer productivity
– Benefits of functional programming, pragmatically
– Hard problems (e.g. threading) handled for us
– Excellent tooling

● Package management
● Build and deploy tools
● Testing frameworks

Erlang / Elixir!

Erlang / Elixir!

Erlang & Elixir !

Testing An Application

● VM with 2 vCPU / 2 GB RAM for the application

Testing An Application

● VM with 4 vCPU / 4 GB RAM for the load tests

● Models user sessions
● Cluster support as well as local concurrency
● Multi-protocol

● HTTP, Websocket, WebDAV, XMPP, PostgreSQL, MySQL, AMQP, MQTT,
LDAP, raw sockets

● Record-for-replay
● XML configuration, amazingly flexible
● Fantastic documentation
● Latest release 1.7.0 in August 2017 (1st release in 2001!)

● Jabber/XMPP
● 90,000 users on 10 1.5Ghz UltraSPARC IIIi CPUs
● 2,000,000 users on a m4.10xlarge (40 vCPU / 160GB)

● HTTP and HTTPS
● 22k+ websocket connections on 4-vCPU/15GB RAM, scaling linearly over a 15

node cluster
● ~10k requests/second on a m1.small
● 60k+ websocket connections on 2 Digital Ocean droplets with 10 vCPUs
● 10 million simultaneous users running on a 75-system cluster, generating more

than one million requests per second

Setting up a cluster is straight-forward:

<clients>
 <client host="client1" weight="1" maxusers="800">
 <ip value="10.9.195.12">|/ip>
 <ip value="10.9.195.13">|/ip>
 |/client>
 <client host="client2" weight="3" maxusers="600" cpu="2"|>
|/clients>

<servers>
 <server host="server1" port="80" type="tcp" weight="4">|/server>
 <server host="server2" port="80" type="tcp" weight="1">|/server>
|/servers>

Defining a wave of users:

<arrivalphase phase="1" duration="10" unit="minute">
 <users maxnumber="100" interarrival="0.1" unit="second">|/users>
|/arrivalphase>

<arrivalphase phase="2" duration="10" unit="minute">
 <users maxnumber="200" arrivalrate="10" unit="second">|/users>
|/arrivalphase>

Sessions definitions are also XML:

<sessions>
 <session name="load" weight="1" type="ts_http">
 <request>
 <http url="https:|/pg1.exote.ch/" method="GET" |>
 |/request>
 |/session>
|/sessions>

An amazing array of options:
● Load progressions
● Think times
● SSL cyphers and reuse
● Retries, timeouts, etc. etc.
● Monitoring (e.g. SNMP)
● ….

Website
http://tsung.erlang-projects.org

Docs
http://tsung.erlang-projects.org/user_manual/

Git
https://github.com/processone/tsung

http://tsung.erlang-projects.org/
http://tsung.erlang-projects.org/user_manual/
https://github.com/processone/tsung

MZBENCH

MZBENCH

● Models requests
● Flexible deployment: AWS, docker, rpm/deb, …
● Multi-protocol

● HTTP, MySQL, PostgreSQL, MongoDB, Cassandra, XMPP, AMQP, raw
sockets, shell commands, and TCPKali

● BDL: a Python-ish DSL for test definition
● Great documentation
● Latest release 0.5.2 in April 20017, first in 2015

MZBENCH

Clustering is simple:
● mzb_api_ec2_plugin : Allocate hosts from the Amazon EC2 cloud
● mzb_staticcloud_plugin : Allocates hosts from a static pool
● mzb_multicloud_plugin : Allocate hosts from multiple sources by ratio

MZBENCH

Scenarios are straight forward as well:

|!benchDL

make_install(
 git = "https:|/github.com/machinezone/mzbench.git",
 dir = "workers/simple_http")

pool(size = numvar("pool_size", 4),
 worker_type = simple_http_worker):
 loop(time = numvar("seconds", 60) sec,
 rate = numvar("loop_rate") rps):
 get("http:|/pg1.exote.ch:4000")

MZBENCH

MZBENCH

MZBENCH

MZBENCH

MZBENCH

MZBENCH

MZBENCH

Git
https://github.com/satori-com/mzbench

Documentation
https://github.com/satori-com/mzbench/tree/maste
r/doc

https://github.com/satori-com/mzbench
https://github.com/satori-com/mzbench/tree/master/doc
https://github.com/satori-com/mzbench/tree/master/doc

Thank you!

Aaron Seigo – aseigo@mykolab.com - 12/2017

mailto:aseigo@mykolab.com

