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Preface

This book is not about how to write correct and beautiful code, I am assuming that you already know how to do that. This book
isn’t really about profiling and performance tuning either. Although, there is a chapter in this book on tracing and profiling which
can help you find bottlenecks and unnecessary usage of resources. There also is a chapter on performance tuning.

These two chapters are the last chapters in the book, and the whole book is building up to those chapters, but the real goal with
this book is to give you all the information, all the gory details, that you need in order to really understand the performance of
your Erlang application.

About this book

For anyone who: Want to tune an Erlang installation. Want to know how to debug VM crashes. Want to improve performance of
Erlang applications. Want to understand how Erlang really works. Want to learn how to build your own runtime environment.

If you want to debug the VM If you want to extend the VM If you want to do performance tweaking—jump to the last chapter
. . . but to really understand that chapter you need to read the book.

How to read this book

The Erlang RunTime System (ERTS) is a complex system with many interdependent components. It is written in a very portable
way so that it can run on anything from a gum-stick computer to the largest multicore system with terabytes of memory. In order
to be able to optimize the performance of such a system for your application, you need to not only know your application, but
you also need to have a thorough understanding of ERTS itself.

With this knowledge of how ERTS works you will be able to understand how your application behaves when running on ERTS,
and you will also be able to find and fix problems with the performance of your application. In the second part of this book we
will go through how you successfully run, monitor and scale your ERTS application.

You don’t need to be an Erlang programmer to read this book, but you will need some basic understanding of what Erlang is.
This following section will give you some Erlang background.

Erlang

In this section we will look at some basic Erlang concepts that are vital to understanding the rest of the book.

Erlang has been called, especially by one of Erlang’s creators Joe Armstrong, a concurrency oriented language. Concurrency is
definitely at the heart of Erlang, and to be able to understand how an Erlang system works you need to understand the concurrency
model of Erlang.

First of all we need to make a distinction between concurrency and parallelism. In this book concurrency is the concept of having
two or more processes that can execute independently of each other, this can be done by first executing one process then the other
or by interleaving the execution, or by executing the processes in parallel. With parallel executions we mean that the processes
actually execute at the exact same time by using several physical execution units. Parallelism can be achieved on different levels.



The Erlang Runtime System xii

Through multiple execution units in the execution pipeline in one core, in several cores on one CPU, by several CPUs in one
machine or through several machines.

Erlang uses processes to achieve concurrency. Conceptually Erlang processes are similar to most OS processes, they execute in
parallel and can communicate through signals. In practices there is a huge difference in that Erlang processes are much more
lightweight than most OS processes. Many other concurrent programming languages call their equivalent to Erlang processes
agents.

Erlang achieves concurrency by interleaving the execution of processes on the Erlang virtual machine, the BEAM. On multi-
core processor the BEAM can also achieve parallelism by running one scheduler per core and executing one Erlang process per
scheduler. The designer of an Erlang system can achieve further parallelism by distributing the system on several computers.

A typical Erlang system (a server or service built in Erlang) consists of a number of Erlang applications, corresponding to a
directory on disk. Each application is made up of several Erlang modules corresponding to files in the directory. Each module
contains a number of functions and each function is made up of expressions.

Since Erlang is a functional language it has no statements, only expressions. Erlang expressions can be combined to an Erlang
function. A function takes a number of arguments and returns a value. In Erlang Code Examples we can see some examples of
Erlang expressions and functions.

Erlang Code Examples

%% Some Erlang expressions:

true.
1+1.
if (X > Y) -> X; true -> Y end.

%% An Erlang function:

max(X, Y) ->
if (X > Y) -> X;

true -> Y
end.

Erlang has a number of built in functions (or BIFs) which are implemented by the VM. This is either for efficiency reasons, like
the implementation of lists:append (which could be implemented in Erlang). It could also be to provide some low level
functionality which would be hard or impossible to implement in Erlang itself, like list_to_atom.

Since Erlang/OTP R13B03 you can also provide your own functions implemented in C by using the Native Implemented Func-
tions (NIF) interface.
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Part I

Understanding ERTS
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Chapter 1

Introducing the Erlang Runtime System

The Erlang RunTime System (ERTS) is a complex system with many interdependent components. It is written in a very portable
way so that it can run on anything from a gum stick computer to the largest multicore system with terabytes of memory. In order
to be able to optimize the performance of such a system for your application, you need to not only know your application, but
you also need to have a thorough understanding of ERTS itself.

1.1 ERTS and the Erlang Runtime System

There is a difference between any Erlang Runtime System and a specific implementation of an Erlang Runtime System. "Er-
lang/OTP" by Ericsson is the de facto standard implementation of Erlang and the Erlang Runtime System. In this book I will
refer to this implementation as ERTS or spelled out Erlang RunTime System with a capital T. (See Section 1.3 for a definition of
OTP.)

There is no official definition of what an Erlang Runtime System is, or what an Erlang Virtual Machine is. You could sort of
imagine what such an ideal Platonic system would look like by taking ERTS and removing all the implementation specific details.
This is unfortunately a circular definition, since you need to know the general definition to be able to identify an implementation
specific detail. In the Erlang world we are usually to pragmatic to worry about this.

I will try to use the term Erlang Runtime System to refer to the general idea of any Erlang Runtime System as opposed to the
specific implementation by Ericsson which I’ll call the Erlang RunTime System or usually just ERTS.

Note This book is mostly a book about ERTS in particular and only to a small extent about any general Erlang Runtime System.
If you assume that I talk about the Ericsson implementation unless I clearly state that I am talking about a general principle you
will probably be right.

1.2 How to read this book

In Part II of this book I will show you how to tune the runtime system for your application and how to profile and debug your
application and the runtime system. In order to really know how to tune the system you also need to know the system. In Part I
of this book you will get a deep understanding of how the runtime system works.

In the following chapters of Part I I will try to explain each component of the system by itself, in one separate chapter for each of
the major component. You should be able to read any one of these chapters without having a full understanding of how the other
components are implemented, but you will need a basic understanding of what each component is. The rest of this introductory
chapter should give you enough basic understanding and vocabulary to be able to jump between the rest of the chapters in part
one in any order you like.

However, if you have the time I strongly recommend reading the book in order the first time. Words that are specific to Erlang and
ERTS or used in a specific way in this book are usually explained at their first occurrence. Then, when you know the vocabulary,
you can come back and use Part I as a reference whenever you have a problem with a particular component.
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1.3 ERTS

In this section I will give a basic overview of the main components of ERTS and some vocabulary needed to understand the more
detailed descriptions of each component in the following chapters.

1.3.1 The Erlang Node (ERTS)

An Erlang node is a running instance of ERTS (or possibly another implementation of Erlang (see Section 1.4)). In OO termi-
nology one could say that an Erlang node is an object of the Erlang Runtime System class.

All execution of Erlang code is done within a node. An erlang node corresponds to an OS process and you can have several
Erlang nodes running on one machine.

Your Erlang program (or application) will run in one or more Erlang nodes, and the performance of your program will depend
not only on your application code but also on all the layers below your code in the Erlang solution stack. In particular if you are
running your code on top of ERTS you will need to know the components of the ERTS Stack.

In [?] you can see the ERTS Stack illustrated with two Erlang nodes running on one machine.

In the bottom of the stack there is the hardware you are running on. The easiest way to improve the performance of your app is
probably to run it on better hardware. If economical or physical constraints wont let you upgrade your hardware you can start
exploring higher levels of the stack. The two most important choices for your hardware is whether it is multicore and whether it
is 32-bit or 64-bit. You need different builds of ERTS depending on whether you want to use multicore or not and whether you
want to use 32-bit or 64-bit. (See [?] for information on how to build different versions of ERTS.) This book will not go into any
details about hardware but I will talk a bit about multicore and NUMA architectures in Chapter 11 and Chapter 12.

The second layer in the stack is the OS level. ERTS runs on most versions of Windows and most POSIX "compliant" OS:es,
including Linux, VxWorks, Solaris, and Mac OS X. Today most of the development of ERTS is done on Linux and OS X, and
you can expect the best performance on these platforms. However, Ericsson have been using Solaris internally in many projects
and ERTS have been tuned for Solaris for many years. Depending on your use case you might actually get best performance on a
Solaris system. The OS choice is usually not based on performance requirements, but is restricted by other demands. If you are
building an embedded application you might be restricted to Rasbian or VxWork, and if you fore some reason are building an
end user or client application you might have to use Windows. The Windows port of ERTS has so far not had the highest priority
and might not be the best choice from a performance or maintenance perspective. If you want to use a 64-bit ERTS you of course
need to have both a 64-bit machine and a 64-bit OS. I will not cover many OS specific questions in this book.

The third layer in the stack is the Erlang Runtime System. In our case this will be ERTS. This and the next layer, the Erlang Virtual
Machine (BEAM), is what this book is all about. In the rest of Part I you will see how these layers work and are implemented,
and in Part II you will see how you can tune ERTS to give your application optimal performance.

The fifth layer, OTP, supplies the Erlang standard libraries. OTP originally stood for "Open Telecom Platform" and was a
number of Erlang libraries supplying building blocks (such as supervisor, gen_server and gen_ftp) for building robust
applications (such as telephony exchanges). Early on, the libraries and the meaning of OTP got intermingled with all the other
standard libraries shipped with ERTS. Nowadays most people use OTP together with Erlang in "Erlang/OTP" as the name for
ERTS and all Erlang libraries shipped by Ericsson. Knowing these standard libraries and how and when to uses them can greatly
improve the performance of your application. This book will not go into any details about the standard libraries and OTP, there
are other books that cover these aspects.

Finally, the sixth layer (APP) is your application which can use all the functionality provided by the underlying layers. Apart
from upgrading your hardware this is probably the place where you most easily can improve your application’s performance. In
[?] I will give some hints and show some tools that can help you profile and optimize your application. In [?] and [?] I’ll give
you some hints on hove to find the cause of crashing applications and how to find bugs in your application.

Node1 Node2

+------+ +------+
| APP | | APP |
+------+ +------+
| OTP | | OTP |
+------+ +------+
| BEAM | | BEAM |
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+------+ +------+
| ERTS | | ERTS |
+------+ +------+
+----------------+
| OS |
+----------------+
| HW or VM |
+----------------+

For information on how to build and run an Erlang node see [?], and read the rest of the book to learn all about the components
of an Erlang node.

1.3.2 The Erlang Compiler

The Erlang Compiler is responsible for compiling Erlang source code, from .erl files into virtual machine code for BEAM (the
virtual machine). The compiler itself is written in Erlang and compiled by itself to BEAM code and usually available in a running
Erlang node. To bootstrap the runtime system there are a number of precompiled BEAM files, including the compiler, in the
bootstrap directory.

For more information about the compiler see Chapter 2.

1.3.3 The Erlang Virtual Machine: BEAM

BEAM is the Erlang virtual machine used for executing Erlang code, just like the JVM is used for executing Java code. BEAM
runs in an Erlang Node.

BEAM: The name BEAM originally stood for Bogdan’s Erlang Abstract Machine, but now a days most people refer to it
as Björn’s Erlang Abstract machine, after the current maintainer.

Just as ERTS is an implementation of a more general concept of a Erlang Runtime System so is BEAM an implementation of a
more general Erlang Virtual Machine (EVM) . There is no definition of what constitutes an EVM but BEAM actually has two
levels of instructions Generic Instructions and Specific Instructions. The generic instruction set could be seen as a blueprint for
an EVM.

For a full description of BEAM see Chapter 5, Chapter 6 and Chapter 7.

1.3.4 Processes

An Erlang process basically works like an OS process. Each process has its own memory (a mailbox, a heap and a stack) and a
process control block (PCB) with information about the process.

All Erlang code execution is done within the context of a process. One Erlang node can have many processes, which can
communicate through message passing and signals. Erlang processes can also communicate with processes on other Erlang
nodes as long as the nodes are connected.

To learn more about processes and the PCB see Chapter 3.

1.3.5 Scheduling

The Scheduler is responsible for choosing the Erlang process to execute. Basically the scheduler keeps two queues, a ready
queue of processes ready to run, and a waiting queue of processes waiting to receive a message. When a process in the waiting
queue receives a message or get a time out it is moved to the ready queue.

The scheduler picks the first process from the ready queue and hands it to BEAM for execution of one time slice. BEAM preempts
the running process when the time slice is used up and adds the processes to the end of the ready queue. If the process is blocked
in a receive before the time slice is used up, it gets added to the waiting queue instead.
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Erlang is concurrent by nature, that is, each process is conceptually running at the same time as all other processes, but in reality
there is just one process running in the VM. On a multicore machine Erlang actually runs more than one scheduler, usually one
per physical core, each having their own queues. This way Erlang achieves true parallelism. To utilize more than one core ERTS
has to be built (see [?]) in SMP mode. SMP stands for Symetric MultiProcessing, that is, the ability to execute a processes on
any one of multiple CPUs.

In reality the picture is more complicated with priorities among processes and the waiting queue is implemented through a timing
wheel. All this and more is described in detail in Chapter 11.

1.3.6 The Erlang Tag Scheme

Erlang is a dynamically typed language, and the runtime system need a way to keep track of the type of each data object. This is
done with a tagging scheme. Each data object or pointer to a data object also has a tag with information about the data type of
the object.

Basically some bits of a pointer are reserved for the tag, and the emulator can then determine the type of the object by looking at
the bit pattern of the tag.

These tags are used for pattern matching and for type test and for primitive operations as well as by the garbage collector.

The complete tagging scheme is described in Chapter 4.

1.3.7 Memory Handling

Erlang uses automatic memory management and the programmer does not have to worry about memory allocation and dealloca-
tion. Each process has a heap and a stack which both can grow, and shrink, as needed.

When a process runs out of heap space, the VM will first try to reclaim free heap space through garbage collection. The garbage
collector will then go through the process stack and heap and copy live data to a new heap while throwing away all the data that
is dead. If there still isn’t enough heap space, a new larger heap will be allocated and the live data is moved there.

The details of the current generational copying garbage collector, including the handling of reference counted binaries can be
found in Chapter 12.

In a system which uses HiPE compiled native code, each process actually has two stacks, a BEAM stack and a native stack, the
details can be found in [?].

1.3.8 The Interpreter and the Command Line Interface

When you start an Erlang node with erl you get a command prompt. This is the Erlang read eval print loop (REPL) or the
command line interface (CLI) or simply the Erlang shell.

You can actually type in Erlang code and execute it directly from the shell. In this case the code is not compiled to BEAM
code and executed by the BEAM, instead the code is parsed and interpreted by the Erlang interpreter. In general the interpreted
code behaves exactly as compiled code, but there a few subtle differences, these differences and all other aspects of the shell are
explained in [?].

1.4 Other Erlang Implementations

This book is mainly concerned with the "standard" Erlang implementation by Ericsson/OTP called ERTS, but there are a few
other implementations available and in this section I will discuss some of them briefly.

Throught the book I will sometimes mention differences between other implementations and ERTS, but there is no guarantee
that I will mention all differences.



The Erlang Runtime System 6 / 137

1.4.1 Erlang on Xen

Erlang on Xen (link:http://erlangonxen.org) is an Erlang implementation running directly on server hardware with no OS layer
in between, only a thin Xen client.

Ling, the virtual machine of Erlang on Xen is almost 100% binary compatible with BEAM. In xref:the_eox_stack you can see
how the Erlang on Xen implementation of the Erlang Solution Stack differs from the ERTS Stack. The thing to note here is that
there is no operating system in the Erlang on Xen stack.

Since Ling implements the generic instruction set of BEAM, it can reuse the BEAM compiler from the OTP layer to compile
Erlang to Ling.

Node1 Node2 Node2 Node3

+------+ +------+ +------+ +------+
| APP | | APP | | APP | | APP |
+------+ +------+ +------+ +------+
| OTP | | OTP | | OTP | | OTP |
+------+ +------+ +------+ +------+
| Ling | | Ling | | BEAM | | BEAM |
+------+ +------+ +------+ +------+
| EoX | | EoX | | ERTS | | ERTS |
+------+ +------+ +------+ +------+
+----------------+ +----------------+
| XEN | | OS |
+----------------+ +----------------+
| HW | | HW or VM |
+----------------+ +----------------+

1.4.2 Erjang

Erjang (link:http://erjang.org) is an Erlang implementation which runs on the JVM. It loads .beam files and recompile the code
to Java .class files. Erjang is almost 100% binary compatible with (generic) BEAM.

In xref:the_erjang_stack you can see how the Erjang implementation of the Erlang Solution Stack differs from the ERTS Stack.
The thing to note here is that JVM has replaced BEAM as the virtual machine and that Erjang provides the services of ERTS by
implementing them in Java on top of the VM.

Node1 Node2 Node3 Node4

+------+ +------+ +------+ +------+
| APP | | APP | | APP | | APP |
+------+ +------+ +------+ +------+
| OTP | | OTP | | OTP | | OTP |
+------+ +------+ +------+ +------+
|Erjang| |Erjang| | BEAM | | BEAM |
+------+ +------+ +------+ +------+
| JVM | | JVM | | ERTS | | ERTS |
+------+ +------+ +------+ +------+
+----------------+ +----------------+
| OS | | OS |
+----------------+ +----------------+
| HW or VM | | HW or VM |
+----------------+ +----------------+

Now that you have a basic understanding of all the major pieces of ERTS, and the necessary vocabulary you can dive into the
details of each component. If you are eager to understand a certain component, you can jump directly to that chapter. Or if you
are really eager to find a solution to a specific problem you could jump to the right chapter in Part II, and try the different methods
to tune, tweak, or debug your system. Although, I strongly suggest that you read through the chapters in Part I in order first in
order to get a deep understanding of how ERTS really works.
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Chapter 2

The Compiler

This book will not cover the programming language Erlang, but since the goal of the ERTS is to run Erlang code you will need to
know how to compile Erlang code. In this chapter we will cover the compiler options needed to generate readable beam code and
how to add debug information to the generated beam file. At the end of the chapter there is also a section on the Elixir compiler.

For those readers interested in compiling their own favorite language to ERTS this chapter will also contain detailed information
about the different intermediate formats in the compiler and how to plug your compiler into the beam compiler backend. I will
also present parse transforms and give examples of how to use them to tweak the Erlang language.

2.1 Compiling Erlang

Erlang is compiled from source code modules in .erl files to fat binary .beam files.

The compiler can be run from the OS shell with the erlc command:

> erlc foo.erl

Alternatively the compiler can be invoked from the Erlang shell with the default shell command c or by calling compile:
file/{1,2}

1> c(foo).

or

1> compile:file(foo).

The optional second argument to compile:file is a list of compiler options. A full list of the options can be found in the
documentation of the compile module: see http://www.erlang.org/doc/man/compile.html.

Normally the compiler will compile Erlang source code from a .erl file and write the resulting binary beam code to a .beam
file. You can also get the resulting binary back as an Erlang term by giving the option binary to the compiler. This option has
then been overloaded to mean return any intermediate format as a term instead of writing to a file. If you for example want the
compiler to return Core Erlang code you can give the options [core, binary].

The compiler is made up of a number of passes as illustrated in Compiler Passes Compiler Passes..

Compiler Passes.

[] = Compiler options, () = files, {} = erlang terms, boxes = passes </title>
(.erl)

|
v

+---------------+
| Scanner |

http://www.erlang.org/doc/man/compile.html
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| (Part of epp) |
+---------------+

|
v

+---------------+
| Pre-processor |
| epp |
+---------------+

|
v

+---------------+ +---------------+
| Parse | -> | user defined |
| Transform | <- | transformation|
+---------------+ +---------------+

|
+---------> (.Pbeam) [makedep]
+---------> {dep} [makedep, binary]
|
+---------> (.pp) [dpp]
+---------> {AST} [dpp, binary]
|
v

+---------------+
| Linter |
| |
+---------------+

|
+---------> (.P) [’P’]
+---------> {AST} [’P’,binary]
|
v

+---------------+
| Save AST |
| |
+---------------+

|
v

+---------------+
| Expand |
| |
+---------------+

|
+---------> (.E) [’E’]
+---------> {.E} [’E’, binary]
|
v

+---------------+
| Core |
| Erlang |
+---------------+

|
+---------> (.core) [dcore|to_core0]
+---------> {core} [to_core0,binary]
|
v

+---------------+
| Core |+
| Passes ||+
+---------------+||
+---------------+|
+---------------+

|



The Erlang Runtime System 9 / 137

+---------> (.core) [to_core]
+---------> {core} [to_core,binary]
|
v

+---------------+
| Kernel |
| Erlang |
+---------------+

|
v

+---------------+
| Kernel |+
| Passes ||+
+---------------+||
+---------------+|
+---------------+

|
v

+---------------+
| BEAM Code |
| |
+---------------+

|
v

+---------------+
| ASM |+
| Passes ||+
+---------------+||
+---------------+|
+---------------+

|
+---------> (.S) [’S’]
+---------> {.S} [’S’, binary]
|
v

+---------------+
| Native Code |
| |
+---------------+

|
v

(.beam)</pre>

If you want to see a complete and up to date list of compiler passes you can run the function compile:options/0 in an
Erlang shell. The definitive source for information about the compiler is of course the source: compile.erl

2.2 Generating Intermediate Output

Looking at the code produced by the compiler is a great help in trying to understand how the virtual machine works. Fortunately,
the compiler can show os the intermediate code after each compiler pass and the final beam code.

Let us try out our newfound knowledge to look at the generated code.

1> compile:options().
dpp - Generate .pp file
’P’ - Generate .P source listing file

...

https://github.com/erlang/otp/blob/maint/lib/compiler/src/compile.erl
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’E’ - Generate .E source listing file

...

’S’ - Generate .S file

Let us try with a small example program "world.erl":

-module(world).
-export([hello/0]).

-include("world.hrl").

hello() -> ?GREETING.

And the include file "world.hrl"

-define(GREETING, "hello world").

If you now compile this with the P option to get the parsed file you get a file "world.P":

2> c(world, [’P’]).

** Warning: No object file created - nothing loaded **
ok

In the resulting .P file you can see the a pretty printet version of the code after the preprocessor (and parse transformation) has
been applied:

-file("world.erl", 1).

-module(world).

-export([hello/0]).

-file("world.hrl", 1).

-file("world.erl", 4).

hello() ->
"hello world".

To see how the code looks after all source code transformations are done, you can compile the code with the E-flag.

3> c(world, [’E’]).

** Warning: No object file created - nothing loaded **
ok

This gives us an .E file, in this case all compiler directives have been removed and the build in functions module_info/
{1,2} have been added to the source:

-vsn("\002").

-file("world.erl", 1).

-file("world.hrl", 1).

-file("world.erl", 5).

hello() ->
"hello world".
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module_info() ->
erlang:get_module_info(world).

module_info(X) ->
erlang:get_module_info(world, X).

We will make use of the P and E options when we look at parse transforms in Section 2.3.2, but first we will take a look at an
"assembler" view of generated BEAM code. Bu giving the option S to the compiler you get a .S file with Erlang terms for each
BEAM instruction in the code.

3> c(world, [’S’]).

** Warning: No object file created - nothing loaded **
ok

The file world.S should look like this:

{module, world}. %% version = 0

{exports, [{hello,0},{module_info,0},{module_info,1}]}.

{attributes, []}.

{labels, 7}.

{function, hello, 0, 2}.
{label,1}.
{line,[{location,"world.erl",6}]}.
{func_info,{atom,world},{atom,hello},0}.

{label,2}.
{move,{literal,"hello world"},{x,0}}.
return.

{function, module_info, 0, 4}.
{label,3}.
{line,[]}.
{func_info,{atom,world},{atom,module_info},0}.

{label,4}.
{move,{atom,world},{x,0}}.
{line,[]}.
{call_ext_only,1,{extfunc,erlang,get_module_info,1}}.

{function, module_info, 1, 6}.
{label,5}.
{line,[]}.
{func_info,{atom,world},{atom,module_info},1}.

{label,6}.
{move,{x,0},{x,1}}.
{move,{atom,world},{x,0}}.
{line,[]}.
{call_ext_only,2,{extfunc,erlang,get_module_info,2}}.

Since this is a file with dot (".") separated Erlang terms, you can read the file back into the Erlang shell with:

{ok, BEAM_Code} = file:consult("world.S").

The assembler code mostly follows the layout of the original source code.
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The first instruction defines the module name of the code. The version mentioned in the comment (%% version =0) is the
version of the beam opcode format (as given by beam_opcodes:format_number/0).

Then comes a list of exports and any compiler attributes (none in this example) much like in any Erlang source module.

The first real beam-like instruction is {labels, 7} which tells the VM the number of lables in the code to make it possible to
allocate room for all lables in one pass over the code.

After that there is the actual code for each function. The first instruction gives us the function name, the arity and the entry point
as a label number.

You can use the S option with great effect to help you understand how the BEAM works, and we will use it like that in later
chapters. It is also invaluable if you develop your own language that you compile to the BEAM through Core Erlang, to see the
generated code.

2.3 Compiler Passes

In the following sections we will go through most of the compiler passes shown in Compiler Passes.. For a language designer
targeting the BEAM this is interesting since it will show you what you can accomplish with the different approaches: macros,
parse transforms, core erlang, and BEAM code, and how they depend on each other.

When tuning Erlang code, it is good to know what optimizations are applied when, and how you can look at generated code
before and after optimizations.

2.3.1 Compiler Pass: The Erlang Preprocessor (epp)

The compilation starts with a combined tokenizer (or scanner) and preprocessor. That is, the preprosessor drives the tokenizer.
This means that macros are expanded as tokens, so it is not a pure string replacement (as for example m4 or cpp). You can not
use Erlang macros to define your own syntax, a macro will expand as a separate token from its surrounding characters. You can
not concatenate a macro and a character to a token:

-define(plus,+).
t(A,B) -> A?plus+B.

This will expand to

t(A,B) -> A + + B.

and not

t(A,B) -> A ++ B.

On the other hand since macro expansion is done on the token level, you do not need to have a valid Erlang term in the right hand
side of the macro, as long as you use it in a way that gives you a valid term. E.g.:

-define(p,o, o]).
t() -> [f,?p.

There are few real useages for this other than to win the obfuscated Erlang code contest. The main point to remember is that you
can not really use the Erlang preprocessor to define a language with a syntax that differs from Erlang. Fortunately there are other
ways to do this, as you shall see later.

2.3.2 Compiler Pass: Parse Transformations

The easiest way to tweak the Erlang language is through Parse Transformations (or parse transforms). Parse Transformations
comes with all sorts of warnings, like this note in the OTP documentation:
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Warning
Programmers are strongly advised not to engage in parse transformations and no support is offered for problems
encountered.

When you use a parse transform you are basically writing an extra pass in the compiler and that can if you are not careful lead to
very unexpected results. But to use a parse transform you have to declare the usage in the module using it, and it will be local to
that module, so as far as compiler tweaks goes this one is quite safe.

The biggest problem with parse transforms as I see it is that you are inventing your own syntax, and it will make it more difficult
for anyone else reading your code. At least until your parse transform has become as popular and widely used as e.g. QLC.

OK, so you know you shouldn’t use it, but if you have to, here is what you need to know. A parse transforms is a function that
works on the abstract syntax tree (AST) (see http://www.erlang.org/doc/apps/erts/absform.html ). The compiler does prepro-
cessing, tokenization and parsing and then it will call the parse transform function with the AST and expects to get back a new
AST.

This means that you can’t change the Erlang syntax fundamentally, but you can change the semantics. Lets say for example that
you for some reason would like to write json code directly in your Erlang code, then you are in luck since the tokens of json and
of Erlang are basically the same. Also, since the Erlang compiler does most of its sanity checks in the linter pass which follows
the parse transform pass, you can allow an AST which does not represent valid Erlang.

To write a parse transform you need to write an Erlang module (lets call it p) which exports the function parse_transform/
2. This function is called by the compiler during the parse transform pass if the module being compiled (lets call it m) contains
the compiler option {parse_transform, p}. The arguments to the funciton is the AST of the module m and the compiler
options given to the call to the compiler.

Note
Note that you will not get any compiler options given in the file, this is a bit of a nuisance since you can’t give options to the
parse transform from the code.
The compiler does not expand compiler options until the expand pass which occures after the parse transform pass.

The documenation of the abstract format is somewhat dense and it is quite hard to get a grip on the abstract format by reading the
documentation. I encourage you to use the syntax_tools and especially erl_syntax_lib for any serious work on the AST.

Here we will develop a a simple parse transform just to get an understanding of the AST. Therefore we will work directly on the
AST and use the old reliable io:format approach instead of syntax_tools.

First we create an example of what we would like to be able to compile json_test.erl:

-module(json_test).
-compile({parse_transform, json_parser}).
-export([test/1]).

test(V) ->
<<{{

"name" : "Jack (\"Bee\") Nimble",
"format": {

"type" : "rect",
"widths" : [1920,1600],
"height" : (-1080),
"interlace" : false,
"frame rate": V

}
}}>>.

Then we create a minimal parse transform module json_parser.erl:

http://www.erlang.org/doc/apps/erts/absform.html
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-module(json_parser).
-export([parse_transform/2]).

parse_transform(AST, _Options) ->
io:format("~p~n", [AST]),
AST.

This identity parse transform returns an unchanged AST but it also prints it out so that you can see what an AST looks like.

> c(json_parser).
{ok,json_parser}
2> c(json_test).
[{attribute,1,file,{"./json_test.erl",1}},
{attribute,1,module,json_test},
{attribute,3,export,[{test,1}]},
{function,5,test,1,
[{clause,5,
[{var,5,’V’}],
[],
[{bin,6,

[{bin_element,6,
{tuple,6,
[{tuple,6,

[{remote,7,{string,7,"name"},{string,7,"Jack (\"Bee\") Nimble"}},
{remote,8,
{string,8,"format"},
{tuple,8,
[{remote,9,{string,9,"type"},{string,9,"rect"}},
{remote,10,
{string,10,"widths"},
{cons,10,
{integer,10,1920},
{cons,10,{integer,10,1600},{nil,10}}}},

{remote,11,{string,11,"height"},{op,11,’-’,{integer,11,1080}}},
{remote,12,{string,12,"interlace"},{atom,12,false}},
{remote,13,{string,13,"frame rate"},{var,13,’V’}}]}}]}]},

default,default}]}]}]},
{eof,16}]

./json_test.erl:7: illegal expression

./json_test.erl:8: illegal expression

./json_test.erl:5: Warning: variable ’V’ is unused
error

The compilation of json_test fails since the module contains invalid Erlang syntax, but you get to see what the AST looks
like. Now we can just write some functions to traverse the AST and rewrite the json code into Erlang code.1

-module(json_parser).
-export([parse_transform/2]).

parse_transform(AST, _Options) ->
json(AST, []).

-define(FUNCTION(Clauses), {function, Label, Name, Arity, Clauses}).

%% We are only interested in code inside functions.
json([?FUNCTION(Clauses) | Elements], Res) ->

json(Elements, [?FUNCTION(json_clauses(Clauses)) | Res]);
json([Other|Elements], Res) -> json(Elements, [Other | Res]);
json([], Res) -> lists:reverse(Res).

1 The translation here is done in accordance with EEP 18 (Erlang Enhancement Proposal 18: "JSON bifs") link:http://www.erlang.org/eeps/eep-0018.html
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%% We are interested in the code in the body of a function.
json_clauses([{clause, CLine, A1, A2, Code} | Clauses]) ->

[{clause, CLine, A1, A2, json_code(Code)} | json_clauses(Clauses)];
json_clauses([]) -> [].

-define(JSON(Json), {bin, _, [{bin_element
, _
, {tuple, _, [Json]}
, _
, _}]}).

%% We look for: <<"json">> = Json-Term
json_code([]) -> [];
json_code([?JSON(Json)|MoreCode]) -> [parse_json(Json) | json_code(MoreCode)];
json_code(Code) -> Code.

%% Json Object -> [{}] | [{Lable, Term}]
parse_json({tuple,Line,[]}) -> {cons, Line, {tuple, Line, []}};
parse_json({tuple,Line,Fields}) -> parse_json_fields(Fields,Line);
%% Json Array -> List
parse_json({cons, Line, Head, Tail}) -> {cons, Line, parse_json(Head),

parse_json(Tail)};
parse_json({nil, Line}) -> {nil, Line};
%% Json String -> <<String>>
parse_json({string, Line, String}) -> str_to_bin(String, Line);
%% Json Integer -> Intger
parse_json({integer, Line, Integer}) -> {integer, Line, Integer};
%% Json Float -> Float
parse_json({float, Line, Float}) -> {float, Line, Float};
%% Json Constant -> true | false | null
parse_json({atom, Line, true}) -> {atom, Line, true};
parse_json({atom, Line, false}) -> {atom, Line, false};
parse_json({atom, Line, null}) -> {atom, Line, null};

%% Variables, should contain Erlang encoded Json
parse_json({var, Line, Var}) -> {var, Line, Var};
%% Json Negative Integer or Float
parse_json({op, Line, ’-’, {Type, _, N}}) when Type =:= integer

; Type =:= float ->
{Type, Line, -N}.

%% parse_json(Code) -> io:format("Code: ~p~n",[Code]), Code.

-define(FIELD(Lable, Code), {remote, L, {string, _, Label}, Code}).

parse_json_fields([], L) -> {nil, L};
%% Label : Json-Term --> [{<<Label>>, Term} | Rest]
parse_json_fields([?FIELD(Lable, Code) | Rest], _) ->

cons(tuple(str_to_bin(Label, L), parse_json(Code), L)
, parse_json_fields(Rest, L)
, L).

tuple(E1, E2, Line) -> {tuple, Line, [E1, E2]}.
cons(Head, Tail, Line) -> {cons, Line, Head, Tail}.

str_to_bin(String, Line) ->
{bin
, Line
, [{bin_element

, Line
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, {string, Line, String}
, default
, default

}
]

}.

And now we can compile json_test without errors:

1> c(json_parser).
{ok,json_parser}
2> c(json_test).
{ok,json_test}
3> json_test:test(42).
[{<<"name">>,<<"Jack (\"Bee\") Nimble">>},
{<<"format">>,

[{<<"type">>,<<"rect">>},
{<<"widths">>,[1920,1600]},
{<<"height">>,-1080},
{<<"interlace">>,false},
{<<"frame rate">>,42}]}]

The AST generated by parse_teansfom/2must correspond to valid Erlang code. Unless you apply several parse transforms,
which is possible. The validity of the code is checked by the following compiler pass.

2.3.3 Compiler Pass: Linter

The linter (erl_lint.erl) generaters warnings for syntactically correct but otherwise bad code, like "export_all flag enabled".

2.3.4 Compiler Pass: Save AST

In order to enable debugging of a module, you can "debug compile" the module, that is pass the option debug_info to the
compiler. The abstract syntax tree will then be saved by the "Save AST" until the end of the compilation, where it will be written
to the .beam file.

It is important to note that the code is saved before any optimisations are appilied, so if there is a bug in an optimisation pass in
the compiler and you run code in the debugger you will get a diffferent behavior. If you are implementing your own compiler
optimisations this can trick you up badly.

2.3.5 Compiler Pass: Expand

In the expand phase source erlang constructs, such as records, are expanded to lower level erlang constructs. Compiler options,
"-compile(...)", are also expanded to meta data.

2.3.6 Compiler Pass: Core Erlang

Core Erlang is a strict functional language suitable for compiler optimizations. It makes code transformations easier by reducing
the number of ways to express the same operation. One way it does this is by introducing let and letrec expressions to make
scoping more explicit.

Core Erlang is the best target for a language you want to run in ERTS. It changes very seldom and it contains all aspects of Erlang
in a clean way. If you target the beam instruction set directly you will have to deal with much more detail, and that instruction set
usually changes slightly between each major release of ERTS. If you on the other hand target Erlang directly you will be more
restricted in what you can describe, and you will also have to deal with more details, since Core Erlang is a cleaner language.

To compile an Erlang file to core you can give the option "to_core", note though that this writes the Erlang core program to a file
with the ".core" extension. To compile an Erlang core program from a ".core" file you can give the option "from_core" to the
compiler.
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1> c(world, to_core).

** Warning: No object file created - nothing loaded **
ok
2> c(world, from_core).
{ok,world}

Note that the .core files are text files written in the human readable core format. To get the core program as an Erlang term you
can add the binary option to the compilation.

2.3.7 Compiler Pass: Kernel Erlang

Kernel Erlang is a flat version of Core Erlang with a few differences. For example, each variable is unique and the scope is a
whole function. Pattern matching is compiled to more primitive operations.

2.3.8 Compiler Pass: BEAM Code

The last step of a normal compilation is the external beam code format. Some low level optimizations such as dead code
elimination and peep hole optimisations are done on this level.

The BEAM code is described in detail in Chapter 7 and Appendix .1

2.3.9 Compiler Pass: Native Code

If you add the flag native to the compilation, and you have a HiPE enabled runtime system, then the compiler will generate
native code for your module and store the native code along with the beam code in the .beam. file.

2.4 Other Compiler Tools

There are a number of tools available to help you work with code generation and code manipulation. These tools are written in
Erlang and not really part of the runtime system but they are very nice to know about if you are implementing another language
on top of the BEAM.

In this section we will cover three of the most useful code tools: the lexer — Leex, the parser generator — Yecc, and a general set
of functions to manipulate abstract forms — Syntax Tools.

2.4.1 Leex

Leex is the Erlang lexer generator. The lexer generator takes a description of a DFA from a definitions file (<fileexten-
sion>xrl</fileextension>) and produces an Erlang program that matches tokens described by the DFA.

The details of how to write a DFA definition for a tokenizer is beyond the scope of this book. For a thorough explanation I
recommend the "Dragon book" (Compiler . . . by Aho, Sethi and Ullman). Other good resources are the man and info entry for
"flex" the lexer program t inspired leex, and the leex documentation itself. If you have info and flex installed you can read the
full manual by typing:

> info flex

The online Erlang documentation also has the leex manual (see [yecc.html](http://erlang.org/doc/man/yecc.html)).

We can use the lexer generator to create an Erlang program which recognizes JSON tokens. By looking at the JSON defini-
tion http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf we can see that there are only a handful of
tokens that we need to handle.

http://erlang.org/doc/man/yecc.html
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
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Definitions.

Digit = [0-9]
Digit1to9 = [1-9]
HexDigit = [0-9a-f]
UnescapedChar = [^\"\\]
EscapedChar = (\\\\)|(\\\")|(\\b)|(\\f)|(\\n)|(\\r)|(\\t)|(\\/)
Unicode = (\\u{HexDigit}{HexDigit}{HexDigit}{HexDigit})
Quote = [\"]
Delim = [\[\]:,{}]
Space = [\n\s\t\r]

Rules.

{Quote}{Quote} : {token, {string, TokenLine, ""}}.
{Quote}({EscapedChar}|({UnescapedChar})|({Unicode}))+{Quote} :

{token, {string, TokenLine, drop_quotes(TokenChars)}}.

null : {token, {null, TokenLine}}.
true : {token, {true, TokenLine}}.
false : {token, {false, TokenLine}}.

{Delim} : {token, {list_to_atom(TokenChars), TokenLine}}.

{Space} : skip_token.

-?{Digit1to9}+{Digit}*\.{Digit}+((E|e)(\+|\-)?{Digit}+)? :
{token, {number, TokenLine, list_to_float(TokenChars)}}.

-?{Digit1to9}+{Digit}* :
{token, {number, TokenLine, list_to_integer(TokenChars)+0.0}}.

Erlang code.
-export([t/0]).

drop_quotes([$" | QuotedString]) -> literal(lists:droplast(QuotedString)).
literal([$\\,$" | Rest]) ->

[$"|literal(Rest)];
literal([$\\,$\\ | Rest]) ->

[$\\|literal(Rest)];
literal([$\\,$/ | Rest]) ->

[$/|literal(Rest)];
literal([$\\,$b | Rest]) ->

[$\b|literal(Rest)];
literal([$\\,$f | Rest]) ->

[$\f|literal(Rest)];
literal([$\\,$n | Rest]) ->

[$\n|literal(Rest)];
literal([$\\,$r | Rest]) ->

[$\r|literal(Rest)];
literal([$\\,$t | Rest]) ->

[$\t|literal(Rest)];
literal([$\\,$u,D0,D1,D2,D3|Rest]) ->

Char = list_to_integer([D0,D1,D2,D3],16),
[Char|literal(Rest)];

literal([C|Rest]) ->
[C|literal(Rest)];

literal([]) ->[].

t() ->
{ok,
[{’{’,1},
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{string,2,"no"},
{’:’,2},
{number,2,1.0},
{’}’,3}
],
4}.

By using the Leex compiler we can compile this DFA to Erlang code, and by giving the option dfa_graph we also produce a
dot-file which can be viewed with e.g. Graphviz.

1> leex:file(json_tokens, [dfa_graph]).
{ok, "./json_tokens.erl"}
2>

You can view the DFA graph using for example dotty.

> dotty json_tokens.dot



The Erlang Runtime System 20 / 137

We can try our tokenizer on an example json file (test.json).

include::code/compiler_chapter/src/test.json

First we need to compile our tokenizer, then we read the file and convert it to a string. Finally we can use the string/1 function
that leex generates to tokenize the test file.

2> c(json_tokens).
{ok,json_tokens}.
3> f(File), f(L), {ok, File} = file:read_file("test.json"), L = binary_to_lisile), ok.
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ok
4> f(Tokens), {ok, Tokens,_} = json_tokens:string(L), hd(Tokens).
{’{’,1}
5>

The shell function f/1 tells the shell to forget a variable binding. This is useful if you want to try a command that binds a variable
multiple times, for example as you are writing the lexer and want to try it out after each rewrite. We will look at the shell
commands in detail in the a later chapter.

Armed with a tokenizer for Json we can now write a json parser using the parser generator Yecc.

2.4.2 Yecc

Yecc is a parser generator for Erlang. The name comes from Yacc (Yet another compiler compiler) the canonical parser generator
for C.

Now that we have a lexer for JSON terms we can write a parser using yecc.

Nonterminals value values object array pair pairs.

Terminals number string true false null [ ] { } , :.

Rootsymbol value.

value→ object : $1. value→ array : $1. value→ number : get_val($1). value→ string : get_val($1). value→ true : get_val($1).
value→ null : get_val($1). value→ false : get_val($1).

object→ { } : #{}. object→ { pairs } : $2.

pairs→ pair : $1. pairs→ pair , pairs : maps:merge($1, $3).

pair→ string : value : #{ get_val($1)⇒ $3 }.

array→ [ ] : {}. array→ [ values ] : list_to_tuple($2).

values→ value : [ $1 ]. values→ value , values : [ $1 | $3 ].

Erlang code.

get_val({,,Val})→ Val; get_val({Val, _})→ Val.

Then we can use yecc to generate an Erlang program that implements the parser, and call the parse/1 function provided with the
tokens generated by the tokenizer as argument.

5> yecc:file(yecc_json_parser), c(yecc_json_parser).
{ok,yexx_json_parser}
6> f(Json), {ok, Json} = yecc_json_parser:parse(Tokens).
{ok,#{"escapes" => "\b\n\r\t\f////",

"format" => #{"frame rate" => 4.5,
"height" => -1080.0,
"interlace" => false,
"type" => "rect",
"unicode" => "/",
"widths" => {1920.0,1.6e3}},

"name" => "Jack \"Bee\" Nimble",
"no" => 1.0}}

The tools Leex and Yecc are nice when you want to compile your own complete language to the Erlang virtual machine. By
combining them with Syntax tools and specifically Merl you can manipulate the Erlang Abstract Syntax tree, either to generate
Erlang code or to change the behaviour of Erlang code.
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2.5 Syntax Tools and Merl

Syntax Tools is a set of libraries for manipulating the internal representation of Erlang’s Abstract Syntax Trees (ASTs).

The syntax tools applications also includes the tool Merl since Erlang 18.0. With Merl you can very easily manipulate the syntax
tree and write parse stransforms in Erlang code.

You can find the documentation for Syntax Tools on the Erlang.org site: [http://erlang.org/doc/apps/syntax_tools/chapter.html](http:/-
/erlang.org/doc/apps/syntax_tools/chapter.html).

2.6 Compiling Elixir

Another approach to writing your own language on top of the Beam is to use the meta programming tools in Elixir. Elixir
compiles to Beam code through the Erlang abstraxt syntax tree.

With Elixir’s defmacro you can define your own Domain Specific Language, direcly in Elixir.

http://erlang.org/doc/apps/syntax_tools/chapter.html](http://erlang.org/doc/apps/syntax_tools/chapter.html
http://erlang.org/doc/apps/syntax_tools/chapter.html](http://erlang.org/doc/apps/syntax_tools/chapter.html
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Chapter 3

Processes

The concept of lightweight processes is the essence of Erlang and the BEAM; they are what makes BEAM stand out from other
virtual machines. In order to understand how the BEAM (and Erlang and Elixir) works you need to know the details of how
processes work, which will help you understand the central concept of the BEAM, including what is easy and cheap for a process
and what is hard and expensive.

Almost everything in the BEAM is connected to the concept of processes and in this chapter we will learn more about these
connections. We will expand on what we learned in the introduction and take a deeper look at concepts such as memory
management, message passing, and in particular scheduling.

An Erlang process is very similar to an OS process. It has its own address space, it can communicate with other processes through
signals and messages, and the execution is controlled by a preemptive scheduler.

When you have a performance problem in an Erlang or Elixir system the problem is very often stemming from a problem within a
particular process or from an imbalance between processes. There are of course other common problems such as bad algorithms
or memory problems which we will look at in other chapters. Still, being able to pinpoint the process which is causing the
problem is always important, therefore we will look at the tools available in the Erlang RunTime System for process inspection.

We will introduce the tools throughout the chapter as we go through how a process and the scheduler works, and then we will
bring all tools together for an exercise at the end.

3.1 What is a Process?

A process is an isolated entity where code execution occurs. A process protects your system from errors in your code by isolating
the effect of the error to the process executing the faulty code.

The runtime comes with a number of tools for inspecting processes to help us find bottlenecks, problems and overuse of resources.
These tools will help you identify and inspect problematic processes.

3.1.1 Listing Processes from the Shell

Let us dive right in and look at which processes we have in a running system. The easiest way to do that is to just start an
Erlang shell and issue the shell command i(). In Elixir you can call the function in the shell_default module as :
shell_default.i.

$ erl
Erlang/OTP 19 [erts-8.1] [source] [64-bit] [smp:4:4] [async-threads:10]

[hipe] [kernel-poll:false]

Eshell V8.1 (abort with ^G)
1> i().
Pid Initial Call Heap Reds Msgs
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Registered Current Function Stack
<0.0.0> otp_ring0:start/2 376 579 0
init init:loop/1 2
<0.1.0> erts_code_purger:start/0 233 4 0
erts_code_purger erts_code_purger:loop/0 3
<0.4.0> erlang:apply/2 987 100084 0
erl_prim_loader erl_prim_loader:loop/3 5
<0.30.0> gen_event:init_it/6 610 226 0
error_logger gen_event:fetch_msg/5 8
<0.31.0> erlang:apply/2 1598 416 0
application_controlle gen_server:loop/6 7
<0.33.0> application_master:init/4 233 64 0

application_master:main_loop/2 6
<0.34.0> application_master:start_it/4 233 59 0

application_master:loop_it/4 5
<0.35.0> supervisor:kernel/1 610 1767 0
kernel_sup gen_server:loop/6 9
<0.36.0> erlang:apply/2 6772 73914 0
code_server code_server:loop/1 3
<0.38.0> rpc:init/1 233 21 0
rex gen_server:loop/6 9
<0.39.0> global:init/1 233 44 0
global_name_server gen_server:loop/6 9
<0.40.0> erlang:apply/2 233 21 0

global:loop_the_locker/1 5
<0.41.0> erlang:apply/2 233 3 0

global:loop_the_registrar/0 2
<0.42.0> inet_db:init/1 233 209 0
inet_db gen_server:loop/6 9
<0.44.0> global_group:init/1 233 55 0
global_group gen_server:loop/6 9
<0.45.0> file_server:init/1 233 79 0
file_server_2 gen_server:loop/6 9
<0.46.0> supervisor_bridge:standard_error/ 233 34 0
standard_error_sup gen_server:loop/6 9
<0.47.0> erlang:apply/2 233 10 0
standard_error standard_error:server_loop/1 2
<0.48.0> supervisor_bridge:user_sup/1 233 54 0

gen_server:loop/6 9
<0.49.0> user_drv:server/2 987 1975 0
user_drv user_drv:server_loop/6 9
<0.50.0> group:server/3 233 40 0
user group:server_loop/3 4
<0.51.0> group:server/3 987 12508 0

group:server_loop/3 4
<0.52.0> erlang:apply/2 4185 9537 0

shell:shell_rep/4 17
<0.53.0> kernel_config:init/1 233 255 0

gen_server:loop/6 9
<0.54.0> supervisor:kernel/1 233 56 0
kernel_safe_sup gen_server:loop/6 9
<0.58.0> erlang:apply/2 2586 18849 0

c:pinfo/1 50
Total 23426 220863 0

222
ok

The i/0 function prints out a list of all processes in the system. Each process gets two lines of information. The first two lines
of the printout are the headers telling you what the information means. As you can see you get the Process ID (Pid) and the name
of the process if any, as well as information about the code the process is started with and is executing. You also get information
about the heap and stack size and the number of reductions and messages in the process. In the rest of this chapter we will learn
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in detail what a stack, a heap, a reduction and a message are. For now we can just assume that if there is a large number for the
heap size, then the process uses a lot of memory and if there is a large number for the reductions then the process has executed a
lot of code.

We can further examine a process with the i/3 function. Let us take a look at the code_server process. We can see in the
previous list that the process identifier (pid) of the code_server is \<0.36.0\>. By calling i/3 with the three numbers of
the pid we get this information:

2> i(0,36,0).
[{registered_name,code_server},
{current_function,{code_server,loop,1}},
{initial_call,{erlang,apply,2}},
{status,waiting},
{message_queue_len,0},
{messages,[]},
{links,[<0.35.0>]},
{dictionary,[]},
{trap_exit,true},
{error_handler,error_handler},
{priority,normal},
{group_leader,<0.33.0>},
{total_heap_size,46422},
{heap_size,46422},
{stack_size,3},
{reductions,93418},
{garbage_collection,[{max_heap_size,#{error_logger => true,

kill => true,
size => 0}},

{min_bin_vheap_size,46422},
{min_heap_size,233},
{fullsweep_after,65535},
{minor_gcs,0}]},

{suspending,[]}]
3>

We got a lot of information from this call and in the rest of this chapter we will learn in detail what most of these items mean.
The first line tells us that the process has been given a name code_server. Next we can see which function the process is
currently executing or suspended in (current_function) and the name of the function that the process started executing in
(initial_call).

We can also see that the process is suspended waiting for messages ({status,waiting}) and that there are no messages in
the mailbox ({message_queue_len,0}, {messages,[]}). We will look closer at how message passing works later in
this chapter.

The fields priority, suspending, reductions, links, trap_exit, error_handler, and group_leader con-
trols the process execution, error handling, and IO. We will look into this a bit more when we introduce the Observer.

The last few fields (dictionary, total_heap_size, heap_size, stack_size, and garbage_collection) gives
us information about the process memory usage and we will look at the process memory areas in detail in this chapter in <ref
linkend="ch.memory"/>.

Another, even more intrusive way of getting information about processes is to use the process information given by the BREAK
menu: ctrl+c p [enter]. Note that while you are in the BREAK state the whole node freezes.

3.1.2 Programatic Process Probing

The shell functions just print the information about the process but you can actually get this information as data, so you can
write your own tools for inspecting processes. You can get a list of all processes with erlang:processes/0, and more
information about a process with erlang:process_info/1. We can also use the function whereis/1 to get a pid from a
name:
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1> Ps = erlang:processes().
[<0.0.0>,<0.1.0>,<0.4.0>,<0.30.0>,<0.31.0>,<0.33.0>,
<0.34.0>,<0.35.0>,<0.36.0>,<0.38.0>,<0.39.0>,<0.40.0>,
<0.41.0>,<0.42.0>,<0.44.0>,<0.45.0>,<0.46.0>,<0.47.0>,
<0.48.0>,<0.49.0>,<0.50.0>,<0.51.0>,<0.52.0>,<0.53.0>,
<0.54.0>,<0.60.0>]

2> CodeServerPid = whereis(codeserver).
<0.36.0>
3> erlang:process_info(CodeServerPid).
[{registered_name,code_server},
{current_function,{code_server,loop,1}},
{initial_call,{erlang,apply,2}},
{status,waiting},
{message_queue_len,0},
{messages,[]},
{links,[<0.35.0>]},
{dictionary,[]},
{trap_exit,true},
{error_handler,error_handler},
{priority,normal},
{group_leader,<0.33.0>},
{total_heap_size,24503},
{heap_size,6772},
{stack_size,3},
{reductions,74260},
{garbage_collection,[{max_heap_size,#{error_logger => true,

kill => true,
size => 0}},

{min_bin_vheap_size,46422},
{min_heap_size,233},
{fullsweep_after,65535},
{minor_gcs,33}]},

{suspending,[]}]

By getting process information as data we can write code to analyze or sort the data as we please. If we grab all processes
in the system (with erlang:processes/0) and then get information about the heap size of each process (with erlang:
process_info(P,total_heap_size)) we can then construct a list with pid and heap size and sort it on heap size:

1> lists:reverse(lists:keysort(2,[{P,element(2,
erlang:process_info(P,total_heap_size))}
|| P <- erlang:processes()])).

[{<0.36.0>,24503},
{<0.52.0>,21916},
{<0.4.0>,12556},
{<0.58.0>,4184},
{<0.51.0>,4184},
{<0.31.0>,3196},
{<0.49.0>,2586},
{<0.35.0>,1597},
{<0.30.0>,986},
{<0.0.0>,752},
{<0.33.0>,609},
{<0.54.0>,233},
{<0.53.0>,233},
{<0.50.0>,233},
{<0.48.0>,233},
{<0.47.0>,233},
{<0.46.0>,233},
{<0.45.0>,233},
{<0.44.0>,233},
{<0.42.0>,233},
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{<0.41.0>,233},
{<0.40.0>,233},
{<0.39.0>,233},
{<0.38.0>,233},
{<0.34.0>,233},
{<0.1.0>,233}]

2>

You might notice that many processes have a heap size of 233, that is because it is the default starting heap size of a process.

See the documentation of the module erlang for a full description of the information available with [process_info.](http://erlang.org/-
doc/man/erlang.html#process_info-1)

3.1.3 Using the Observer to Inspect Processes

A third way of examining processes is with the [Observer.](http://erlang.org/doc/apps/observer/observer_ug.html) The Observer
is an extensive graphical interface for inspecting the Erlang RunTime System. We will use the Observer throughout this book to
examine different aspects of the system.

The Observer can either be started from the OS shell and attach itself to an node or directly from an Elixir or Erlang shell. For
now we will just start the Observer from the Elixir shell with :observer.start or from the Erlang shell with observer:
start().

When the Observer is started it will show you a system overview, see the following screen shot.

<figure id="fig-observer_system">

<imagedata fileref="images/observer_system.png"/> </figure> We will go over some of this information in detail later in this
and the next chapter. For now we will just use the Observer to look at the running processes. First we take a look at the
Application tab which shows the supervision tree of the running system:

![](images/observer_applications.png)

Here we get a graphical view of how the processes are linked. This is a very nice way to get an overview of how a system is
structured. You also get a nice feeling of processes as isolated entities floating in space connected to each other through links.

To actually get some useful information about the processes we switch to the Processes tab:

![](images/observer_processes.png)

In this view we get basically the same information as with i/0 in the shell. We see the pid, the registered name, number of
reductions, memory usage and number of messages and the current function.

We can also look into a process by double clicking on its row, for example on the code server, to get the kind of information you
can get with process_info/2:

![](images/observer_code_server.png)

We will not go through what all this information means right now, but if you keep on reading all will eventually be revealed.

Enabling the Observer [NOTE] If you are building your application with erlang.mk or rebar and you want to include the
Observer application in your build you might need to add the applications runtime_tools, wx, and observer to your list
of applications in yourapp.app.src.

Now that we have a basic understanding of what a process is and some tools to find and inspect processes in a system we are
ready to dive deeper to learn how a process is implemented.

3.2 Processes Are Just Memory

A process is basically four blocks of memory: a stack, a heap, a message area, and the Process Control Block (the PCB).

The stack is used for keeping track of program execution by storing return addresses, for passing arguments to functions, and for
keeping local variables. Larger structures, such as lists and tuples are stored on the heap.

http://erlang.org/doc/man/erlang.html#process_info-1
http://erlang.org/doc/man/erlang.html#process_info-1
http://erlang.org/doc/apps/observer/observer_ug.html
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The message area, also called the mailbox, is used to store messages sent to the process from other processes. The process
control block is used to keep track of the state of the process.

See the following figure for an illustration of a process as memory:

+-------+ +-------+
| PCB | | Stack |
+-------+ +-------+

+-------+ +-------+
| M-box | | Heap |
+-------+ +-------+

This picture of a process is very much simplified, and we will go through a number of iterations of more refined versions to get
to a more accurate picture.

The stack, the heap, and the mailbox are all dynamically allocated and can grow and shrink as needed. We will see exactly how
this works in later chapters. The PCB on the other hand is statically allocated and contains a number of fields that controls the
process.

We can actually inspect some of these memory areas by using HiPE’s Built In Functions (HiPE BIFs) for introspection. With
these BIFs we can print out the memory content of stacks, heaps, and the PCB. The raw data is printed and in most cases a human
readable version is pretty printed alongside the data. To really understand everything that we see when we inspect the memory
we will need to know more about the Erlang tagging scheme (which we will go through in <ref linkend="ch.types"/> and about
the execution model and error handling which we will go through in <ref linkend="ch.BEAM"/>), but using these tools will give
us a nice view of how a process really is just memory.

HiPE’s Built In Functions (HiPE BIFs)

The HiPE BIFs are not an official part of Erlang/OTP. They are not supported by the OTP team. They might be removed
or changed at any time, so don’t base your mission critical services on them.

These BIFs examines the internals of ERTS in a ways that might not be safe. The BIFs for introspection often just print to
standard out and you might be surprised where that output ends up.

These BIFs can lock up a scheduler thread for a long time without using any reductions (we will look at what that means
in the next chapter). Printing the heap of a very large process for example can take a long time.

Theses BIFs are only meant to be used for debugging and you use them at you own risk. You should probably not run
them on a live system.

Many of the HiPE BIFs where written by the author in the mid nineties (before 64 bits Erlang existed) and the printouts
on a 64 bit machine might be a bit off. There are new versions of these BIFs that do a better job, hopefully they will
be included in ERTS at the time of the printing of this book. Otherwise you can build your own version with the patch
provided in the code section and the instructions in <ref linkend="ap.building_erts"/>.

We can see the context of the stack of a process with hipe_bifs:show_estack/1:

1> hipe_bifs:show_estack(self()).
| BEAM STACK |
| Address | Contents |
|--------------------|--------------------| BEAM ACTIVATION RECORD
| 0x00007f9cc3238310 | 0x00007f9cc2ea6fe8 | BEAM PC shell:exprs/7 + 0x4e
| 0x00007f9cc3238318 | 0xfffffffffffffffb | []
| 0x00007f9cc3238320 | 0x000000000000644b | none
|--------------------|--------------------| BEAM ACTIVATION RECORD
| 0x00007f9cc3238328 | 0x00007f9cc2ea6708 | BEAM PC shell:eval_exprs/7 + 0xf
| 0x00007f9cc3238330 | 0xfffffffffffffffb | []
| 0x00007f9cc3238338 | 0xfffffffffffffffb | []
| 0x00007f9cc3238340 | 0x000000000004f3cb | cmd
| 0x00007f9cc3238348 | 0xfffffffffffffffb | []
| 0x00007f9cc3238350 | 0x00007f9cc3237102 | {value,#Fun<shell.5.104321512>}
| 0x00007f9cc3238358 | 0x00007f9cc323711a | {eval,#Fun<shell.21.104321512>}
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| 0x00007f9cc3238360 | 0x00000000000200ff | 8207
| 0x00007f9cc3238368 | 0xfffffffffffffffb | []
| 0x00007f9cc3238370 | 0xfffffffffffffffb | []
| 0x00007f9cc3238378 | 0xfffffffffffffffb | []
|--------------------|--------------------| BEAM ACTIVATION RECORD
| 0x00007f9cc3238380 | 0x00007f9cc2ea6300 | BEAM PC shell:eval_loop/3 + 0x47
| 0x00007f9cc3238388 | 0xfffffffffffffffb | []
| 0x00007f9cc3238390 | 0xfffffffffffffffb | []
| 0x00007f9cc3238398 | 0xfffffffffffffffb | []
| 0x00007f9cc32383a0 | 0xfffffffffffffffb | []
| 0x00007f9cc32383a8 | 0x000001a000000343 | <0.52.0>
|....................|....................| BEAM CATCH FRAME
| 0x00007f9cc32383b0 | 0x0000000000005a9b | CATCH 0x00007f9cc2ea67d8
| | | (BEAM shell:eval_exprs/7 + 0x29)
|********************|********************|
|--------------------|--------------------| BEAM ACTIVATION RECORD
| 0x00007f9cc32383b8 | 0x000000000093aeb8 | BEAM PC normal-process-exit
| 0x00007f9cc32383c0 | 0x00000000000200ff | 8207
| 0x00007f9cc32383c8 | 0x000001a000000343 | <0.52.0>
|--------------------|--------------------|

true
2>

We will look closer at the values on the stack and the heap in <ref linkend="ch.types"/>. The content of the heap is printed by
hipe_bifs:show_heap/1. Since we do not want to list a large heap here we’ll just spawn a new process that does nothing
and show that heap:

2> hipe_bifs:show_heap(spawn(fun () -> ok end)).
From: 0x00007f7f33ec9588 to 0x00007f7f33ec9848
| H E A P |
| Address | Contents |
|--------------------|--------------------|
| 0x00007f7f33ec9588 | 0x00007f7f33ec959a | #Fun<erl_eval.20.52032458>
| 0x00007f7f33ec9590 | 0x00007f7f33ec9839 | [[]]
| 0x00007f7f33ec9598 | 0x0000000000000154 | Thing Arity(5) Tag(20)
| 0x00007f7f33ec95a0 | 0x00007f7f3d3833d0 | THING
| 0x00007f7f33ec95a8 | 0x0000000000000000 | THING
| 0x00007f7f33ec95b0 | 0x0000000000600324 | THING
| 0x00007f7f33ec95b8 | 0x0000000000000000 | THING
| 0x00007f7f33ec95c0 | 0x0000000000000001 | THING
| 0x00007f7f33ec95c8 | 0x000001d0000003a3 | <0.58.0>
| 0x00007f7f33ec95d0 | 0x00007f7f33ec95da | {[],{eval...
| 0x00007f7f33ec95d8 | 0x0000000000000100 | Arity(4)
| 0x00007f7f33ec95e0 | 0xfffffffffffffffb | []
| 0x00007f7f33ec95e8 | 0x00007f7f33ec9602 | {eval,#Fun<shell.21.104321512>}
| 0x00007f7f33ec95f0 | 0x00007f7f33ec961a | {value,#Fun<shell.5.104321512>}...
| 0x00007f7f33ec95f8 | 0x00007f7f33ec9631 | [{clause...

...

| 0x00007f7f33ec97d0 | 0x00007f7f33ec97fa | #Fun<shell.5.104321512>
| 0x00007f7f33ec97d8 | 0x00000000000000c0 | Arity(3)
| 0x00007f7f33ec97e0 | 0x0000000000000e4b | atom
| 0x00007f7f33ec97e8 | 0x000000000000001f | 1
| 0x00007f7f33ec97f0 | 0x0000000000006d0b | ok
| 0x00007f7f33ec97f8 | 0x0000000000000154 | Thing Arity(5) Tag(20)
| 0x00007f7f33ec9800 | 0x00007f7f33bde0c8 | THING
| 0x00007f7f33ec9808 | 0x00007f7f33ec9780 | THING
| 0x00007f7f33ec9810 | 0x000000000060030c | THING
| 0x00007f7f33ec9818 | 0x0000000000000002 | THING
| 0x00007f7f33ec9820 | 0x0000000000000001 | THING
| 0x00007f7f33ec9828 | 0x000001d0000003a3 | <0.58.0>
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| 0x00007f7f33ec9830 | 0x000001a000000343 | <0.52.0>
| 0x00007f7f33ec9838 | 0xfffffffffffffffb | []
| 0x00007f7f33ec9840 | 0xfffffffffffffffb | []
|--------------------|--------------------|

true
3>

We can also print the content of some of the fields in the PCB with ‘hipe_bifs:show_pcb/1’:

3> hipe_bifs:show_pcb(self()).
P: 0x00007f7f3cbc0400

Offset| Name | Value | *Value | 0 | id | 0x000001d0000003a3 | | 72 | htop | 0x00007f7f33f15298 | | 96 | hend | 0x00007f7f33f16540
| | 88 | heap | 0x00007f7f33f11470 | | 104 | heap_sz | 0x0000000000000a1a | | 80 | stop | 0x00007f7f33f16480 | | 592 | gen_gcs |
0x0000000000000012 | | 594 | max_gen_gcs | 0x000000000000ffff | | 552 | high_water | 0x00007f7f33f11c50 | | 560 | old_hend
| 0x00007f7f33e90648 | | 568 | old_htop | 0x00007f7f33e8f8e8 | | 576 | old_head | 0x00007f7f33e8e770 | | 112 | min_heap_.. |
0x00000000000000e9 | | 328 | rcount | 0x0000000000000000 | | 336 | reds | 0x0000000000002270 | | 16 | tracer | 0xfffffffffffffffb
| | 24 | trace_fla.. | 0x0000000000000000 | | 344 | group_lea.. | 0x0000019800000333 | | 352 | flags | 0x0000000000002000
| | 360 | fvalue | 0xfffffffffffffffb | | 368 | freason | 0x0000000000000000 | | 320 | fcalls | 0x00000000000005a2 | | 384 | next |
0x0000000000000000 | | 48 | reg | 0x0000000000000000 | | 56 | nlinks | 0x00007f7f3cbc0750 | | 616 | mbuf | 0x0000000000000000
| | 640 | mbuf_sz | 0x0000000000000000 | | 464 | dictionary | 0x0000000000000000 | | 472 | seq..clock | 0x0000000000000000
| | 480 | seq..astcnt | 0x0000000000000000 | | 488 | seq..token | 0xfffffffffffffffb | | 496 | intial[0] | 0x000000000000320b
| | 504 | intial[1] | 0x0000000000000c8b | | 512 | intial[2] | 0x0000000000000002 | | 520 | current | 0x00007f7f3be87c20 |
0x000000000000ed8b | 296 | cp | 0x00007f7f3d3a5100 | 0x0000000000440848 | 304 | i | 0x00007f7f3be87c38 | 0x000000000044353a
| 312 | catches | 0x0000000000000001 | | 224 | arity | 0x0000000000000000 | | 232 | arg_reg | 0x00007f7f3cbc04f8 | 0x000000000000320b
| 240 | max_arg_reg | 0x0000000000000006 | | 248 | def..reg[0] | 0x000000000000320b | | 256 | def..reg[1] | 0x0000000000000c8b
| | 264 | def..reg[2] | 0x00007f7f33ec9589 | | 272 | def..reg[3] | 0x0000000000000000 | | 280 | def..reg[4] | 0x0000000000000000
| | 288 | def..reg[5] | 0x00000000000007d0 | | 136 | nsp | 0x0000000000000000 | | 144 | nstack | 0x0000000000000000 | | 152
| nstend | 0x0000000000000000 | | 160 | ncallee | 0x0000000000000000 | | 56 | ncsp | 0x0000000000000000 | | 64 | narity |
0x0000000000000000 | |

true
4>

Now armed with these inspection tools we are ready to look at what this fields in the PCB means.

3.3 The PCB

The Process Control Block contains all the fields that control the behavior and current state of a process. In this section and the
rest of the chapter we will go through the most important fields. We will leave out some fields that have to do with execution and
tracing from this chapter, instead we will cover those in <ref linkend="ch.BEAM"/>.

If you want to dig even deeper than we will go in this chapter you can look at the C source code. The PCB is implemented as
a C struct called process in the file [erl_process.h.](https://github.com/erlang/otp/blob/OTP_R16B03-1/erts/emulator/-
beam/erl_process.h)

The field id contains the process ID (or PID).

0 | id | 0x000001d0000003a3 | |

The process id is an Erlang term and hence tagged. (See <ref linkend="sec.tagging"/>) This means that the 4 least significant
bits are a tag (0011). In the code section there is a module for inspecting Erlang terms (<filename>show.erl</filename>) which
we will cover in the chapter on types. We can use it now to to examine the type of a tagged word though.

4> show:tag_to_type(16#0000001d0000003a3).
pid
5>

https://github.com/erlang/otp/blob/OTP_R16B03-1/erts/emulator/beam/erl_process.h
https://github.com/erlang/otp/blob/OTP_R16B03-1/erts/emulator/beam/erl_process.h
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The fields htop and stop are pointers to the top of the heap and the stack, that is, they are pointing to the next free slots on the
heap or stack. The fields heap (start) and hend points to the start and the stop of the whole heap, and heap_sz gives the size
of the heap in words. That is hend -heap =heap_sz * 8 on a 64 bit machine and hend -heap =heap_sz * 4 on a
32 bit machine.

The field heap_min_size is the size, in words, that the heap starts with and which it will not shrink smaller than, the default
value is 233.

We can now refine the picture of the process heap with the fields from the PCB that controls the shape of the heap:

hend -> +----+ -
| | ^
| | | -

htop -> | | | heap_sz*8 ^
|....| | hend-heap | min_heap_size
|....| v v

heap -> +----+ - -
The Heap

But wait, how come we have a heap start and a heap end, but no start and stop for the stack? That is because the BEAM uses
a trick to save space and pointers by allocating the heap and the stack together. It is time for our first revision of our process as
memory picture. The heap and the stack are actually just one memory area:

+-------+ +-------+
| PCB | | Stack |
+-------+ +-------+

| free |
+-------+ +-------+
| M-box | | Heap |
+-------+ +-------+

The stack grows towards lower memory addresses and the heap towards higher memory, so we can also refine the picture of the
heap by adding the stack top pointer to the picture:

hend -> +----+ -
|....| ^

stop -> | | |
| | |
| | | -

htop -> | | | heap_sz ^
|....| | | min_heap_size
|....| v v

heap -> +----+ - -
The Heap

If the pointers htop and stopwere to meet, the process would run out of free memory and would have to do a garbage collection
to free up memory.

3.4 The Garbage Collector (GC)

The heap memory management schema is to use a per process copying generational garbage collector. When there is no more
space on the heap (or the stack, since they share the allocated memory block), the garbage collector kicks in to free up memory.

The GC allocates a new memory area called to space. Then it goes through the stack to find all live roots and follows each root
and copies the data on the heap to the new heap. Finally it also copies the stack to the new heap and frees up the old memory
area.

The GC is controlled by these fields int the PCB:
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Eterm *high_water;
Eterm *old_hend; /* Heap pointers for generational GC. */
Eterm *old_htop;
Eterm *old_heap;
Uint max_heap_size; /* Maximum size of heap (in words). */
Uint16 gen_gcs; /* Number of (minor) generational GCs. */
Uint16 max_gen_gcs; /* Max minor gen GCs before fullsweep. */

Since the garbage collector is generational it will use a heuristics to just look at new data most of the time. That is, in what is
called a minor collection, the GC only looks at the top part of the stack and moves new data to the new heap. Old data, that is
data allocated below the high_water mark (see the figure below) on the heap, is moved to a special area called the old heap.

Most of the time, then, there is another heap area for each process: the old heap, handled by the fields old_heap, old_htop
and old_hend in the PCB. This almost bings us back to our original picture of a process as four memory areas:

+-------+ +-------+
| PCB | | Stack | +-------+ - old_hend
+-------+ +-------+ + + - old_htop

| free | +-------+
+-------+ high_water -> +-------+ | Old |
| M-box | | Heap | | Heap |
+-------+ +-------+ +-------+ - old_heap

When a process starts there is no old heap, but as soon as young data has matured to old data and there is a garbage collection,
the old heap is allocated. The old heap is garbage collected when there is a major collection, also called a full sweep. See <ref
linkend="ch.memory"/> for more details of how garbage collection works. In that chapter we will also look at how to track down
and fix memory related problems.

3.5 Mailboxes and Message Passing

Process communication is done through message passing. A process send is implemented so that a sending process copies the
message from its own heap to the mailbox of the receiving process.

In the early days of Erlang concurrency was implemented through multitasking in the scheduler. We will talk more about
concurrency in the section about the scheduler later in this chapter, for now it is worth noting that in the first version of Erlang
there was no parallelism and there could only be one process running at the time. In that version the sending process could write
data directly on the receiving process’ heap.

3.5.1 Sending Messages in Parallel

When multicore systems were introduced and the Erlang implementation was extended with several schedulers running processes
in parallel it was no longer safe to write directly on another process’ heap without taking the main lock of the receiver. At
this time the concept of m-bufs was introduced (also called heap fragments). An m-buf is a memory area outside of a
process heap where other processes can safely write data. If a sending process can not get the lock it would write to the m-buf
instead. When all data of a message has been copied to the m-buf the message is linked to the process through the mailbox.
The linking (LINK_MESSAGE in <filename>erl_message.h</filename>) appends the message to the receiver’s message queue.

The garbage collector would then copy the messages onto the process’ heap. To reduce the pressure on the GC the mailbox is
divided into two lists, one containing seen messages and one containing new messages. The GC does not have to look at the new
messages since we know they will survive (they are still in the mailbox) and that way we can avoid some copying.

3.6 Lock Free Message Passing

In Erlang 19 a new per process setting was introduced, message_queue_data, which can take the values on_heap or off_heap.
When set to on_heap the sending process will first try to take the main lock of the receiver and if it succeeds the message
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will be copied directly onto the receiver’s heap. This can only be done if the receiver is suspended and if no other process has
grabbed the lock to send to the same process. If the sender can not obtain the lock it will allocate a heap fragment and copy the
message there instead.

If the flag is set to off_heap the sender will not try to get the lock and instead write directly to a heap fragment. This will reduce
lock contention but allocating a heap fragment is more expensive than writing directly to the already allocated process heap and
it can lead to larger memory usage. There might be a large empty heap allocated and still new messages are written to new
fragments.

With on_heap allocation all the messages, both directly allocated on the heap and messages in heap fragments, will be copied by
the GC. If the message queue is large and many messages are not handled and therefore still are live, they will be promoted to
the old heap and the size of the process heap will increase, leading to higher memory usage.

All messages are added to a linked list (the mailbox) when the message has been copied to the receiving process. If the message is
copied to the heap of the receiving process the message is linked in to the internal message queue (or seen messages)
and examined by the GC. In the off_heap allocation scheme new messages are placed in the "external" message in queue
and ignored by the GC.

3.6.1 Memory Areas for Messages

We can now revise our picture of the process as four memory areas once more. Now the process is made up of five memory areas
(two mailboxes) and a varying number of heap fragments (m-bufs):

+-------+ +-------+
| PCB | | Stack |
+-------+ +-------+

| free |
+-------+ +-------+ +-------+ +-------+
| M-box | | M-box | | Heap | | Old |
| intern| | inbox | | | | Heap |
+-------+ +-------+ +-------+ +-------+

+-------+ +-------+ +-------+ +-------+
| m-buf | | m-buf | | m-buf | | m-buf |
+-------+ +-------+ +-------+ +-------+

Each mailbox consists of a length and two pointers, stored in the fields msg.len, msg.first, msg.last for the internal queue and
msg_inq.len, msg_inq.first, and msg_inq.last for the external in queue. There is also a pointer to the next message to look
at (msg.save) to implement selective receive.

3.6.2 Inspecting Message Handling

Let us use our introspection tools to see how this works in more detail. We start by setting up a process with a message in the
mailbox and then take a look at the PCB.

4> P = spawn(fun() -> receive stop -> ok end end).
<0.63.0>
5> P ! start.
start
6> hipe_bifs:show_pcb(P).

...
408 | msg.first | 0x00007fd40962d880 | |
416 | msg.last | 0x00007fd40962d880 | |
424 | msg.save | 0x00007fd40962d880 | |
432 | msg.len | 0x0000000000000001 | |
696 | msg_inq.first | 0x0000000000000000 | |
704 | msg_inq.last | 0x00007fd40a306238 | |
712 | msg_inq.len | 0x0000000000000000 | |
616 | mbuf | 0x0000000000000000 | |
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640 | mbuf_sz | 0x0000000000000000 | |
...

From this we can see that there is one message in the message queue and the first, last and save pointers all points to this
message.

As mentioned we can force the message to end up in the in queue by setting the flag message_queue_data. We can try this with
the following program:

<embed file= "code/msg.erl"/>

With this program we can try sending a message on heap and off heap and look at the PCB after each send. With on heap we get
the same result as when just sending a message before:

5> msg:send_on_heap().

...

408 | msg.first | 0x00007fd4096283c0 | |
416 | msg.last | 0x00007fd4096283c0 | |
424 | msg.save | 0x00007fd40a3c1048 | |
432 | msg.len | 0x0000000000000001 | |
696 | msg_inq.first | 0x0000000000000000 | |
704 | msg_inq.last | 0x00007fd40a3c1168 | |
712 | msg_inq.len | 0x0000000000000000 | |
616 | mbuf | 0x0000000000000000 | |
640 | mbuf_sz | 0x0000000000000000 | |

...

If we try sending to a process with the flag set to off_heap the message ends up in the in queue instead:

6> msg:send_off_heap().

...

408 | msg.first | 0x0000000000000000 | |
416 | msg.last | 0x00007fd40a3c0618 | |
424 | msg.save | 0x00007fd40a3c0618 | |
432 | msg.len | 0x0000000000000000 | |
696 | msg_inq.first | 0x00007fd3b19f1830 | |
704 | msg_inq.last | 0x00007fd3b19f1830 | |
712 | msg_inq.len | 0x0000000000000001 | |
616 | mbuf | 0x0000000000000000 | |
640 | mbuf_sz | 0x0000000000000000 | |

...

3.6.3 The Process of Sending a Message to a Process

We will ignore the distribution case for now, that is we will not consider messages sent between Erlang nodes. Imagine two
processes P1 and P2. Process P1 wants to send a message (Msg) to process P2, as illustrated by this figure:

P 1
+---------------------------------+
| +-------+ +-------+ +-------+ |
| | PCB | | Stack | | Old | |
| +-------+ +-------+ | Heap | |
| | free | +-------+ |
| +-------+ +-------+ +-------+ |
| | M-box | | Heap | | M-box | |
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| | inq | | [Msg] | | intern| |
| +-------+ +-------+ +-------+ |
+---------------------------------+

|
| P2 ! Msg
v

P 2
+---------------------------------+
| +-------+ +-------+ +-------+ |
| | PCB | | Stack | | Old | |
| +-------+ +-------+ | Heap | |
| | free | +-------+ |
| +-------+ +-------+ +-------+ |
| | M-box | | Heap | | M-box | |
| | inq | | | | intern| |
| +-------+ +-------+ +-------+ |
+---------------------------------+

Process P1 will then take the following steps:

• Calculate the size of Msg.

• Allocate space for the message (on or off P2’s heap as described before).

• Copy Msg from P1’s heap to the allocated space.

• Allocate and fill in an ErlMessage struct wrapping up the message.

• Link in the ErlMessage either in the ErlMsgQueue or in the ErlMsgInQueue.

If process P2 is suspended and no other process is trying to send a message to P2 and there is space on the heap and the allocation
strategy is on_heap the message will directly end up on the heap:

P 1
+---------------------------------+
| +-------+ +-------+ +-------+ |
| | PCB | | Stack | | Old | |
| +-------+ +-------+ | Heap | |
| | free | +-------+ |
| +-------+ +-------+ +-------+ |
| | M-box | | Heap | | M-box | |
| | inq | | [Msg] | | intern| |
| +-------+ +-------+ +-------+ |
+---------------------------------+

|
| P2 ! Msg
v

P 2
+---------------------------------+
| +-------+ +-------+ +-------+ |
| | PCB | | Stack | | Old | |
| +-------+ +-------+ | Heap | |
| | free | +-------+ |
| +-------+ +-------+ +-------+ |
| | M-box | | Heap | | M-box | |
| | inq | | | | intern| |
| | | | [Msg] | | | |
| | | | ^ | | first | |
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| +-------+ +-|-----+ +---|---+ |
| | v |
| | +-------+ |
| | |next:[]| |
| | | m: * | |
| | +----|--+ |
| | | |
| +-------------+ |
+---------------------------------+

If P1 can not get the main lock of P2 or there is not enough space on P2’s heap and the allocation strategy is on_heap the
message will end up in an m-buf but linked from the internal mailbox:

P 1
+---------------------------------+
| +-------+ +-------+ +-------+ |
| | PCB | | Stack | | Old | |
| +-------+ +-------+ | Heap | |
| | free | +-------+ |
| +-------+ +-------+ +-------+ |
| | M-box | | Heap | | M-box | |
| | inq | | [Msg] | | intern| |
| +-------+ +-------+ +-------+ |
+---------------------------------+

|
| P2 ! Msg
v

P 2
+---------------------------------+
| +-------+ +-------+ +-------+ |
| | PCB | | Stack | | Old | |
| +-------+ +-------+ | Heap | |
| | free | +-------+ |
| +-------+ +-------+ +-------+ |
| | M-box | | Heap | | M-box | |
| | inq | | | | intern| |
| | | | | | | |
| | | | | | first | |
| +-------+ +-------+ +---|---+ |
| M-buf v |
| +-------+ +-------+ |
| +->| [Msg] | |next:[]| |
| | | | | m: * | |
| | +-------+ +----|--+ |
| | | |
| +------------------+ |
+---------------------------------+

After a GC the message will be moved into the heap.

If the allocation strategy is off_heap the message will end up in an m-buf and linked from the external mailbox:

P 1
+---------------------------------+
| +-------+ +-------+ +-------+ |
| | PCB | | Stack | | Old | |
| +-------+ +-------+ | Heap | |
| | free | +-------+ |
| +-------+ +-------+ +-------+ |
| | M-box | | Heap | | M-box | |
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| | inq | | [Msg] | | intern| |
| +-------+ +-------+ +-------+ |
+---------------------------------+

|
| P2 ! Msg
v

P 2
+---------------------------------+
| +-------+ +-------+ +-------+ |
| | PCB | | Stack | | Old | |
| +-------+ +-------+ | Heap | |
| | free | +-------+ |
| +-------+ +-------+ +-------+ |
| | M-box | | Heap | | M-box | |
| | inq | | | | intern| |
| | | | | | | |
| | first | | | | first | |
| +---|---+ +-------+ +-------+ |
| v M-buf |
| +-------+ +-------+ |
| |next:[]| | | |
| | m:*--->| [Msg] | |
| +-------+ +-------+ |
| |
| |
+---------------------------------+

After a GC the message will still be in the M-buf. Not until the message is received and reachable from some other object on
the heap or from the stack will the message be copied to the process heap during a GC.

3.6.4 Receiving a Message

Erlang supports selective receive, which means that a message that doesn’t match can be left in the mailbox for a later receive.
And the processes can be suspended with messages in the mailbox when no message matches. The msg.save field contains a
pointer to a pointer to the next message to look at.

In later chapters we will cover the details of m-bufs and how the garbage collector handles mailboxes. We will also go through
the details of how receive is implemented in the BEAM in later chapters.

3.6.5 Tuning Message Passing

With the new message_queue_data flag introduced in Erlang 19 you can trade memory for execution time in a new way. If the
receiving process is overloaded and holding on to the main lock, it might be a good strategy to use the off_heap allocation in
order to let the sending process quickly dump the message in an M-buf.

If two processes have a nicely balanced producer consumer behavior where there is no real contention for the process lock then
allocation directly on the receivers heap will be faster and use less memory.

If the receiver is backed up and is receiving more messages than it has time to handle, it might actually start using more memory
as messages are copied to the heap, and migrated to the old heap. Since unseen messages are considered live, the heap will need
to grow and use more memory.

In order to find out which allocation strategy is best for your system you will need to benchmark and measure the behavior. The
first and easiest test to do is probably to change the default allocation strategy at the start of the system. The ERTS flag hmqd sets
the default strategy to either off_heap or on_heap. If you start Erlang without this flag the default will be on_heap. By setting
up your benchmark so that Erlang is started with +hmqd off_heap you can test whether the system behaves better or worse if all
processes use off heap allocation. Then you might want to find bottle neck processes and test switching allocation strategies for
those processes only.
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3.7 The Process Dictionary

There is actually one more memory area in a process where Erlang terms can be stored, the Process Dictionary.

The Process Dictionary (PD) is a process local key-value store. One advantage with this is that all keys and values are stored on
the heap and there is no copying as with send or an ETS table.

We can now update our view of a process with yet another memory area, PD, the process dictionary:

+-------+ +-------+ +-------+
| PCB | | Stack | | PD |
+-------+ +-------+ +-------+

| free |
+-------+ +-------+ +-------+ +-------+
| M-box | | M-box | | Heap | | Old |
| intern| | inq | | | | Heap |
+-------+ +-------+ +-------+ +-------+

+-------+ +-------+ +-------+ +-------+
| m-buf | | m-buf | | m-buf | | m-buf |
+-------+ +-------+ +-------+ +-------+

With such a small array you are bound to get some collisions before the area grows. Each hash value points to a bucket with key
value pairs. The bucket is actually an Erlang list on the heap. Each entry in the list is a two tuple ({key, Value}) also stored on the
heap.

Putting an element in the PD is not completely free, it will result in an extra tuple and a cons, and might cause garbage collection
to be triggered. Updating a key in the dictionary, which is in a bucket, causes the whole bucket (the whole list) to be reallocated
to make sure we don’t get pointers from the old heap to the new heap. (In <ref linkend="ch.memory"/> we will see the details of
how garbage collection works.)

3.8 Dig In

In this chapter we have looked at how a process in implemented. In particular we looked at how the memory of a process is
organized, how message passing works and the information in the PCB. We also looked at a number of tools for inspecting
processes introspection, such as erlang:process_info, and the hipe:show*_ bifs.

Use the functions erlang:processes/0 and erlang:process_info/1/2 to inspect the processes in the system. Here
are some functions to try:

1> Ps = erlang:processes().
[<0.0.0>,<0.3.0>,<0.6.0>,<0.7.0>,<0.9.0>,<0.10.0>,<0.11.0>,
<0.12.0>,<0.13.0>,<0.14.0>,<0.15.0>,<0.16.0>,<0.17.0>,
<0.19.0>,<0.20.0>,<0.21.0>,<0.22.0>,<0.23.0>,<0.24.0>,
<0.25.0>,<0.26.0>,<0.27.0>,<0.28.0>,<0.29.0>,<0.33.0>]

2> P = self().
<0.33.0>
3> erlang:process_info(P).
[{current_function,{erl_eval,do_apply,6}},
{initial_call,{erlang,apply,2}},
{status,running},
{message_queue_len,0},
{messages,[]},
{links,[<0.27.0>]},
{dictionary,[]},
{trap_exit,false},
{error_handler,error_handler},
{priority,normal},
{group_leader,<0.26.0>},
{total_heap_size,17730},



The Erlang Runtime System 39 / 137

{heap_size,6772},
{stack_size,24},
{reductions,25944},
{garbage_collection,[{min_bin_vheap_size,46422},

{min_heap_size,233},
{fullsweep_after,65535},
{minor_gcs,1}]},

{suspending,[]}]
4> lists:keysort(2,[{P,element(2,erlang:process_info(P,

total_heap_size))} || P <- Ps]).
[{<0.10.0>,233},
{<0.13.0>,233},
{<0.14.0>,233},
{<0.15.0>,233},
{<0.16.0>,233},
{<0.17.0>,233},
{<0.19.0>,233},
{<0.20.0>,233},
{<0.21.0>,233},
{<0.22.0>,233},
{<0.23.0>,233},
{<0.25.0>,233},
{<0.28.0>,233},
{<0.29.0>,233},
{<0.6.0>,752},
{<0.9.0>,752},
{<0.11.0>,1363},
{<0.7.0>,1597},
{<0.0.0>,1974},
{<0.24.0>,2585},
{<0.26.0>,6771},
{<0.12.0>,13544},
{<0.33.0>,13544},
{<0.3.0>,15143},
{<0.27.0>,32875}]

9>
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Chapter 4

The Erlang Type System and Tags

One of the most important aspects of ERTS to understand is how ERTS stores data, that is, how Erlang terms are stored in
memory. This gives you the basis for understanding how garbage collection works, how message passing works, and gives you
an insight into how much memory is needed.

In this chapter you will learn the basic data types of Erlang and how they are implemented in ERTS. This knowledge will be
essential in understanding the chapter on memory allocation and garbage collection, see Chapter 12.

4.1 The Erlang Type System

Erlang is strongly typed. That is, there is no way to coerce one type into another type, you can only convert from one type to
another. Compare this to e.g. C where you can coerce a char to an int or any type pointed to by a pointer to (void *).

The Erlang type lattice is quite flat, there are only a few real sub types, numbers have the sub types integer and float, and list has
the subtypes nil and cons. (One could also argue that tuple has one subtype for each size.)

The Erlang Type Lattice

any()
/ / / / | \ \ \ \ ←↩

\
/ / / / | \ \ \ \ ←↩

\
number() atom() reference() fun() port() pid() tuple() map() list() ←↩

binary()
/ \ \ \ \ | / / / / \ ←↩

/
integer() float() \ \ \ | / / / nil() cons() ←↩

/
\ \ \ \ \ | / / / / / /

none()

There is a partial order (< and >) on all terms in Erlang where the types are ordered from left to right in the above lattice.

The order is partial and not total since integers and floats are converted before comparison. Both (1 < 1.0) and (1.0 < 1) are
false, and (1 =< 1.0 and 1 >= 1.0) and (1 =/= 1.0). The number with the lesser precision is converted to the number with higher
precision. Usually integers are converted to floats. For very large or small floats the float is converted to an integer. This happens
if all significant digits are to the left of the decimal point.

Since Erlang 18, when two maps are compared for order they are compared as follows: If one map has fewer elements than the
other it is considered smaller. Otherwise the keys are compared in term order, where all integers are considered smaller than all
floats. If all the keys are the same then each value pair (in key order) is compared arithmetically, i.e. by first converting them to
the same precision.
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The same is true when comparing for equality, thus #{1⇒ 1.0} == #{1⇒ 1} but #{1.0⇒ 1} /= #{1⇒ 1}.

In Erlang versions prior to 18 keys where also compared arithmetically.

Erlang is dynamically typed. That is, types will be checked at runtime and if a type error occurs an exception is thrown. The
compiler does not check the types at compile time, unlike in a statically typed language like C or Java where you can get a type
error during compilation.

These aspects of the Erlang type system, strongly statically typed with an order on the types puts some constraints on the
implementation of the language. In order to be able to check and compare types at runtime each Erlang term has to carry its type
with it.

This is solved by tagging the terms.

4.2 The Tagging Scheme

In the memory representation of an Erlang term a few bits are reserved for a type tag. For performance reasons the terms are
divided into immediates and boxed terms. An immediate term can fit into a machine word, that is, in a register or on a stack slot.
A boxed term consists of two parts: a tagged pointer and a number of words stored on the process heap. The boxes stored on the
heap have a header and a body, unless it is a list.

Currently ERTS uses a staged tag scheme, the history and reasoning behind the this scheme is explained in a technical report from
the HiPE group. (See link:http://www.it.uu.se/research/publications/reports/2000-029/) The tagging scheme is implemented in
erl_term.h.

The basic idea is to use the least significant bits for tags. Since most modern CPU architectures aligns 32- and 64-bit words,
there are at least two bits that are "unused" for pointers. These bits can be used as tags instead. Unfortunately those two bits are
not enough for all the types in Erlang, more bits are therefore used as needed.

4.2.1 Tags for Immediates

The first two bits (the primary tag) are used as follows:

00 Header (on heap) CP (on stack)
01 List (cons)
10 Boxed
11 Immediate

The header tag is only used on the heap for header words, more on that later. On the stack 00 indicates a return address. The list
tag is used for cons cells, and the boxed tag is used for all other pointers to the heap. The immediate tag is used further divided
like this:

00 11 Pid
01 11 Port
10 11 Immediate 2
11 11 Small integer

Pid and ports are immediates and can be compared for equality efficiently. They are of course in reality just references, a pid is a
process identifier and it points to a process. The process does not reside on the heap of any process but is handled by the PCB. A
port works in much the same way.

There are two types of integers in ERTS, small integers and bignums. Small integers fits in one machine word minus four tag
bits, i.e. in 28 or 60 bits for 32 and 64 bits system respectively. Bignums on the other hand can be as large as needed (only
limited by the heap space) and are stored on the heap, as boxed objects.

By having all four tag bits as ones for small integers the emulator can make an efficient test when doing integer arithmetic to see
if both arguments are immediates. (is_both_small(x,y) is defined as (x & y & 1111) ==1111).

The Immediate 2 tag is further divided like this:
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00 10 11 Atom
01 10 11 Catch
10 10 11 [UNUSED]
11 10 11 Nil

Atoms are made up of an index in the atom table and the atom tag. Two atom immediates can be compared for equality by just
comparing their immediate representation.

In the atom table atoms are stored as C structs like this:

typedef struct atom {
IndexSlot slot; /* MUST BE LOCATED AT TOP OF STRUCT!!! */
int len; /* length of atom name */
int ord0; /* ordinal value of first 3 bytes + 7 bits */
byte* name; /* name of atom */

} Atom;

Thanks to the len and the ord0 fields the order of two atoms can be compared efficiently as long as they don’t start with the
same four letters.

Note
If you for some reason generate atoms with a pattern like name followed by a number and then store them in an ordered
list or ordered tree the atom comparison will be more expensive if they all have the same first letters (e.g. foo_1, foo_2,
etc.).

Not that you should ever generate atom names, since the atom table is limited. I’m just saying, there is an evil micro
optimization to be found here.

You would of course never do this, but if you find code that generates atom with a number followed by a postfix name,
now you know what the author of that code might have been thinking.

The Catch immediate is only used on the stack. It contains an indirect pointer to the continuation point in the code where
execution should continue after an exception. More on this in Chapter 8.

The Nil tag is used for the empty list (nil or []). The rest of the word is filled with ones.

4.2.2 Tags for Boxed Terms

Erlang terms stored on the heap uses several machine words. Lists, or cons cells, are just two consecutive words on the heap.
The head and the tail (or car and cdr as they are called in lisp and some places in the ERTS code).

A string in Erlang is just a list of integers representing characters. In releases prior to Erlang OTP R14 strings have been encoded
as ISO-latin-1 (ISO8859-1). Since R14 strings are encoded as lists of Unicode code points. For strings in latin-1 there is no
difference since latin-1 is a subset of Unicode.

The string "Hello" might look like this in memory:

Representation of the string "Hello" on a 32 bit machine.

hend -> +-------- -------- -------- --------+
| ... |
| ... |
|00000000 00000000 00000000 10000001| 128 + list tag ---------------+

stop -> | | |
|

htop -> | | |
132 |00000000 00000000 00000000 01111001| 120 + list tag -------------- | -+
128 |00000000 00000000 00000110 10001111| (H) 104 bsl 4 + small int tag <+ |
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124 |00000000 00000000 00000000 01110001| 112 + list tag ----------------- | -+
120 |00000000 00000000 00000110 01011111| (e) 101 bsl 4 + small int tag <---+ |
116 |00000000 00000000 00000000 01110001| 112 + list tag -------------------- | ←↩

-+
112 |00000000 00000000 00000110 11001111| (l) 108 bsl 4 + small int tag <------+ ←↩

|
108 |00000000 00000000 00000000 01110001| 96 + list tag ----------------------- ←↩

| -+
104 |00000000 00000000 00000110 11001111| (l) 108 bsl 4 + small int tag ←↩

<---------+ |
100 |11111111 11111111 11111111 11111011| NIL ←↩

|
96 |00000000 00000000 00000110 11111111| (o) 111 bsl 4 + small int tag ←↩

<------------+
| ... |

heap -> +-----------------------------------+

All other boxed terms start with a header word. The header word uses a four bit header tag and the primary header tag (00), it
also has an arity which says how many words the boxed term uses. On a 32-bit machine it looks like this: aaaaaaaaaaaaaa
aaaaaaaaaaaatttt00.

The tags are:

0000 ARITYVAL (Tuples)
0001 BINARY_AGGREGATE |
001s BIGNUM with sign bit |
0100 REF |
0101 FUN | THINGS
0110 FLONUM |
0111 EXPORT |
1000 REFC_BINARY | |
1001 HEAP_BINARY | BINARIES |
1010 SUB_BINARY | |
1011 [UNUSED]
1100 EXTERNAL_PID | |
1101 EXTERNAL_PORT | EXTERNAL THINGS |
1110 EXTERNAL_REF | |
1111 MAP

Tuples are stored on the heap with just the arity and then each element in the following words. The empty tuple {} is stored just
as the word 0 (header tag 0, tuple tag 0000, and arity 0).

Representation of the tuple {104,101,108,108,111} on a 32 bit machine.

hend -> +-------- -------- -------- --------+
| ... |
| ... |
|00000000 00000000 00000000 10000010| 128 + boxed tag ---------------+

stop -> | | |
|

htop -> | | |
150 |00000000 00000000 00000110 11111111| (o) 111 bsl 4 + small int tag |
144 |00000000 00000000 00000110 11001111| (l) 108 bsl 4 + small int tag |
140 |00000000 00000000 00000110 11001111| (l) 108 bsl 4 + small int tag |
136 |00000000 00000000 00000110 01011111| (e) 101 bsl 4 + small int tag |
132 |00000000 00000000 00000110 10001111| (H) 104 bsl 4 + small int tag |
128 |00000000 00000000 00000000 10100000| 5 bsl 6 + tuple & header tag <-+

| ... |
heap -> +-----------------------------------+

A binary is an imutable array of bytes. There are four types of internal representations of binaries. The two types heap binaries
and refc binaries contains binary data. The other two types, sub binaries and match contexts (the BINARY_AGREGATE tag)
are smaller references into one of the other two types.



The Erlang Runtime System 44 / 137

Binaries that are 64 bytes or less can be stored directly on the process heap as heap binaries. Larger binaries are reference
counted and the paylod is stored outside of the process heap, a reference to the payload is stoed on the process heap in an object
called a ProcBin.

We will talk more about binaries in the Chapter 12.

Integers that do not fit in a small integer (word size - 4 bits) are stored on the heap as "bignums" (or arbitrary precision integers).
A bignum has a header word followed by a number of words encoding the bignum. The sign part of the bignum tag (s) in the
header encodes the sign of the number (s=0 for positive numbers, and s=1 for negative numbers).

TODO: Describe bignum encoding. (And arithmetic ?)

A reference is a "unique" term often used to tag messages in order to basically implement a channel over a process mailbox. A
references is implemented as an 82 bit counter. After 9671406556917033397649407 calls to make_ref the counter will wrap
and start over with ref 0 again. You need a really fast machine to do that many calls to make_ref within your lifetime. Unless
you restart the node, in which case it also will start from 0 again, but then all the old local refs are gone. If you send the pid to
another node it becomes an external ref, see below.

On a 32-bit system a local ref takes up four 32-bit words on the heap. On a 64-bit system a ref takes up three 64-bit words on the
heap.

Representation of a ref in a 32-bit (or half-word) system.

|00000000 00000000 00000000 11010000| Arity 3 + ref tag
|00000000 000000rr rrrrrrrr rrrrrrrr| Data0
|rrrrrrrr rrrrrrrr rrrrrrrr rrrrrrrr| Data1
|rrrrrrrr rrrrrrrr rrrrrrrr rrrrrrrr| Data2

The reference number is (Data2 bsl 50) + (Data1 bsl 18) + Data0.

Outline

TODO

The implementation of floats, ports, pids. Strings as lists, IO lists,
lists on 64-bit machines. Binaries, sub binaries, and copying. Records.

Possibly: The half-word machine. Sharing and deep copy. (or this will be in GC ←↩
)

Outro/conclusion
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Chapter 5

The Erlang Virtual Machine: BEAM

BEAM (Bogumil’s/Björn’s Abstract Machine) is the machine that executes the code in the Erlang Runtime System. It is a garbage
collecting, reduction counting, virtual, non-preemptive, directly threaded, register machine. If that doesn’t tell you much, don’t
worry, in the following sections we will go through what each of those words means in this context.

The virtual machine, BEAM, is at the heart of the Erlang node. It is the BEAM that executes the Erlang code. That is, it is
BEAM that executes your application code. Understanding how BEAM executes the code is vital to be able to profile and tune
your code.

The BEAM desig influences large parts of the rest of ERTS. The primitives for scheduling infuences the Scheduler (Chapter 11),
the representation of Erlang terms and the interaction with the memory infuences the Garbage Collector (Chapter 12). By
understanding the basic design of BEAM you will more easily understand the implementations of these other components.

5.1 Working Memory: A stack machine, it is not

As opposed to its predecessor Jam (Joe’s Abstract Machine) which was a stack machine, the BEAM is a register machine loosely
based on WAM (TODO: cite). In a stack machine each operand to an instruction is first pushed to the working stack, then the
instruction pops its arguments and then it pushes the result on the stack.

Stack machines are quite popular among virtual machine- and programming language implementers since they are quite easy
to generate code for, and the code becomes very compact. The compiler does not need to do any register allocation, and most
operations do not need any arguments (in the instruction stream).

Compiling the expression "8 + 17 * 2." to a stack machine could yield code like:

push 8
push 17
push 2
multiply
add

This code can be generated directly from the parse tree of the expression. By using Erlang expression and the modules erl_s
can and erl_parse we can build the world’s most simplistic compiler.

compile(String) ->
[ParseTree] = element(2,

erl_parse:parse_exprs(
element(2,

erl_scan:string(String)))),
generate_code(ParseTree).

generate_code({op, _Line, ’+’, Arg1, Arg2}) ->
generate_code(Arg1) ++ generate_code(Arg2) ++ [add];

generate_code({op, _Line, ’*’, Arg1, Arg2}) ->
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generate_code(Arg1) ++ generate_code(Arg2) ++ [multiply];
generate_code({integer, _Line, I}) -> [push, I].

And an even more simplistic virtual stack machine:

interpret(Code) -> interpret(Code, []).

interpret([push, I |Rest], Stack) -> interpret(Rest, [I|Stack]);
interpret([add |Rest], [Arg2, Arg1|Stack]) -> interpret(Rest, [Arg1+Arg2|Stack]);
interpret([multiply|Rest], [Arg2, Arg1|Stack]) -> interpret(Rest, [Arg1*Arg2|Stack]);
interpret([], [Res|_]) -> Res.

And a quick test run gives us the answer:

1> stack_machine:interpret(stack_machine:compile("8 + 17 * 2.")).
42

Great, you have built your first virtual machine! Handling subtraction, division and the rest of the Erlang language is left as an
exercise for the reader.

Anyway, the BEAM is not a stack machine, it is a register machine. In a register machine instruction operands are stored in
registers instead of the stack, and the result of an operation usually end up in a specific register.

Most register machines do still have a stack used for passing arguments to functions and saving return addresses. BEAM has
both a stack and registers, but just as in WAM the stack slots are accessible through registers called Y-registers. BEAM also have
a number of X-registers, and a special register X0 (sometimes also called R0) which works as an accumulator where results are
stored.

The X registers are used as argument registers for function calls and register X0 is used for the return value.

The X registers are stored in a C-array in the BEAM emulator and they are globally accessible from all functions. The X0 register
is cashed in a local variable mapped to a physical machine register in the native machine on most architectures.

The Y registers are stored in the stack frame of the caller and only accessible by the calling functions. To save a value across a
function call BEAM allocates a stack slot for it in the current stack frame and then moves the value to a Y register.

hend -> +----+ -
|....|

(fp) -> | AN |
(y0) -> | |
(y1) -> | |
stop -> | |

| |
| |

htop -> | |
|....|
|....|

heap -> +----+

+----+
X1000 | |
X999 | |
... ....

X2 | |
X1 | |

(X0) | |
+----+

Let us compile the following program with the ’S’ flag:

-module(add).
-export([add/2]).
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add(A,B) -> id(A) + id(B).

id(I) -> I.

Then we get the following code for the add function:

{function, add, 2, 2}.
{label,1}.
{func_info,{atom,add},{atom,add},2}.

{label,2}.
{allocate,1,2}.
{move,{x,1},{y,0}}.
{call,1,{f,4}}.
{move,{x,0},{x,1}}.
{move,{y,0},{x,0}}.
{move,{x,1},{y,0}}.
{call,1,{f,4}}.
{gc_bif,’+’,{f,0},1,[{y,0},{x,0}],{x,0}}.
{deallocate,1}.
return.

Here we can see that the code (starting at label 2) first allocates a stack slot, to get space to save the argument B over the function
call id(A). The value is then saved by the instruction {move,{x,1},{y,0}} (read as move x1 to y0 or in imperative style: y0 := x1).

The id function (at label f4) is then called by {call,1,{f,4}}. (We will come back to what the argument "1" stands for later.) Then
the result of the call (now in X0) need to be saved on the stack (Y0), but the argument B is saved in Y0 so the BEAM does a bit
of shuffling:

Except for the x and y registers, there are a number of special purpose registers:

SPECIAL PURPOSE REGISTERS

• Htop - The top of the heap.

• E - The top of the stack.

• CP - Continuation Pointer, i.e. function return address

• I - instruction pointer

• fcalls - reduction counter

These registers are cached versions of the corresponding fields in the PCB.

{move,{x,0},{x,1}}. % x1 := x0 (id(A))
{move,{y,0},{x,0}}. % x0 := y0 (B)
{move,{x,1},{y,0}}. % y0 := x1 (id(A))

Now we have the second argument B in x0 (the first argument register) and we can call the id function again {call,1,{f,4}}.

After the call x0 contains id(B) and y0 contains id(A), now we can do the addition: {gc_bif,+,{f,0},1,[{y,0},{x,0}],{x,0}}. (We
will go into the details of bif calls and gc later.)

5.2 Dispatch: Directly Threaded Code

The instruction decoder in BEAM is implemented with a technique called directly threaded code. In this context the word
threaded has nothing to do with OS threads, concurrency or parallelism. It is the execution path which is threaded through the
virtual machine itself.

If we take a look at our naive stack machine for arithmetic expressions we see that we use Erlang atoms and pattern matching to
decode which instruction to execute. This is a very heavy machinery to just decode machine instructions. In a real machine we
would code each instruction as a "machine word" integer.
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We can rewrite our stack machine to be a byte code machine implemented in C. First we rewrite the compiler so that it pro-
duces byte codes. This is pretty straight forward, just replace each instruction encoded as an atom with a byte representing the
instruction. To be able to handle integers larger than 255 we encode integers with a size byte followed by the integer encoded in
bytes.

compile(Expression, FileName) ->
[ParseTree] = element(2,

erl_parse:parse_exprs(
element(2,

erl_scan:string(Expression)))),
file:write_file(FileName, generate_code(ParseTree) ++ [stop()]).

generate_code({op, _Line, ’+’, Arg1, Arg2}) ->
generate_code(Arg1) ++ generate_code(Arg2) ++ [add()];

generate_code({op, _Line, ’*’, Arg1, Arg2}) ->
generate_code(Arg1) ++ generate_code(Arg2) ++ [multiply()];

generate_code({integer, _Line, I}) -> [push(), integer(I)].

stop() -> 0.
add() -> 1.
multiply() -> 2.
push() -> 3.
integer(I) ->

L = binary_to_list(binary:encode_unsigned(I)),
[length(L) | L].

Now lets write a simple virtual machine in C. The full code can be found in [appendix].

#define STOP 0
#define ADD 1
#define MUL 2
#define PUSH 3

#define pop() (stack[--sp])
#define push(X) (stack[sp++] = X)

int run(char *code) {
int stack[1000];
int sp = 0, size = 0, val = 0;
char *ip = code;

while (*ip != STOP) {
switch (*ip++) {
case ADD: push(pop() + pop()); break;
case MUL: push(pop() * pop()); break;
case PUSH:

size = *ip++;
val = 0;
while (size--) { val = val * 256 + *ip++; }
push(val);
break;

}
}
return pop();

}

You see, a virtual machine written in C does not need to be very complicated. This machine is just a loop checking the byte code
at each instruction by looking at the value pointed to by the _instruction pointer _ (ip).

For each byte code instruction it will switch on the instruction byte code and jump to the case which executes the instruction.
This requires a decoding of the instruction and then a jump to the correct code. If we look at the assembly for vsm.c (gcc -S
vsm.c) we see the inner loop of the decoder:
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L11:
movl -16(%ebp), %eax
movzbl (%eax), %eax
movsbl %al, %eax
addl $1, -16(%ebp)
cmpl $2, %eax
je L7
cmpl $3, %eax
je L8
cmpl $1, %eax
jne L5

It has to compare the byte code with each instruction code and then do a conditional jump. In a real machine with many
instructions this can become quite expensive.

A better solution would be to have a table with the address of the code then we could just use an index into the table to load
the address and jump without the need to do a compare. This technique is sometimes called token threaded code. Taking this
a step further we can actually store the address of the function implementing the instruction in the code memory. This is called
subroutine threaded code.

This approach will make the decoding simpler at runtime, but it makes the whole VM more complicated by requiring a loader.
The loader replaces the byte code instructions with addresses to functions implementing the instructions.

A loader might look like:

typedef void (*instructionp_t)(void);

instructionp_t *read_file(char *name) {
FILE *file;
instructionp_t *code;
instructionp_t *cp;
long size;
char ch;
unsigned int val;

file = fopen(name, "r");

if(file == NULL) exit(1);

fseek(file, 0L, SEEK_END);
size = ftell(file);
code = calloc(size, sizeof(instructionp_t));
if(code == NULL) exit(1);
cp = code;

fseek(file, 0L, SEEK_SET);
while ( ( ch = fgetc(file) ) != EOF )
{

switch (ch) {
case ADD: *cp++ = &add; break;
case MUL: *cp++ = &mul; break;
case PUSH:

*cp++ = &pushi;
ch = fgetc(file);
val = 0;
while (ch--) { val = val * 256 + fgetc(file); }

*cp++ = (instructionp_t) val;
break;

}
}

*cp = &stop;
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fclose(file);
return code;

}

As we can see, we do more work at load time here, including the decoding of integers larger than 255. (Yes, I know, the code is
not safe for very large integers.)

The decode and dispatch loop of the VM becomes quite simple though:

int run() {
sp = 0;
running = 1;

while (running) (*ip++)();

return pop();
}

Then we just need to implement the instructions:

void add() { int x,y; x = pop(); y = pop(); push(x + y); }
void mul() { int x,y; x = pop(); y = pop(); push(x * y); }
void pushi(){ int x; x = (int)*ip++; push(x); }
void stop() { running = 0; }

In BEAM this concept is taken one step further, and BEAM uses directly threaded code (sometimes called only thread code). In
directly threaded code the call and return sequence is replaced by direct jumps to the implementation of the next instruction. In
order to implement this in C, BEAM uses the GCC extension "labels as values".

We will look closer at the BEAM emulator later but we will take a quick look at how the add instruction is implemented. The
code is somewhat hard to follow due to the heavy usage of macros. The STORE_ARITH_RESULT macro actually hides the
dispatch function which looks something like: I += 4; Goto(*I);.

#define OpCase(OpCode) lb_##OpCode
#define Goto(Rel) goto *(Rel)

...

OpCase(i_plus_jId):
{

Eterm result;

if (is_both_small(tmp_arg1, tmp_arg2)) {
Sint i = signed_val(tmp_arg1) + signed_val(tmp_arg2);
ASSERT(MY_IS_SSMALL(i) == IS_SSMALL(i));
if (MY_IS_SSMALL(i)) {

result = make_small(i);
STORE_ARITH_RESULT(result);

}

}
arith_func = ARITH_FUNC(mixed_plus);
goto do_big_arith2;

}

To make it a little easier to understand how the BEAM dispatcher is implemented let us take a somewhat imagenary example.
We will start with some real external BEAM code but then I will invent some internal BEAM instructions and implement them
in C.

If we start with a simple add function in Erlang:

add(A,B) -> id(A) + id(B).
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Compiled to BEAM code this will look like:

{function, add, 2, 2}.
{label,1}.
{func_info,{atom,add},{atom,add},2}.

{label,2}.
{allocate,1,2}.
{move,{x,1},{y,0}}.
{call,1,{f,4}}.
{move,{x,0},{x,1}}.
{move,{y,0},{x,0}}.
{move,{x,1},{y,0}}.
{call,1,{f,4}}.
{gc_bif,’+’,{f,0},1,[{y,0},{x,0}],{x,0}}.
{deallocate,1}.
return.

(See add.erl and add.S in Appendix .14 for the full code.)

Now if we zoom in on the the three instructions betwen the function calls in this code:

{move,{x,0},{x,1}}.
{move,{y,0},{x,0}}.
{move,{x,1},{y,0}}.

This code first saves the return value of the function call (x0) in a new register (x1). Then it moves the caller saves register (y0)
to the first argument register (x0). Finally it moves the saved value in x1 to the caller save register (y0) so that it will survive the
next function call.

Imagine that we would implement three instruction in BEAM called move_xx, move_yx, and move_xy (These instructions
does not exist in the BEAM we just use them to illustrate this example):

#define OpCase(OpCode) lb_##OpCode
#define Goto(Rel) goto *((void *)Rel)
#define Arg(N) (Eterm *) I[(N)+1]

OpCase(move_xx):
{

x(Arg(1)) = x(Arg(0));
I += 3;
Goto(*I);

}

OpCase(move_yx): {
x(Arg(1)) = y(Arg(0));
I += 3;
Goto(*I);

}

OpCase(move_xy): {
y(Arg(1)) = x(Arg(0));
I += 3;
Goto(*I);

}

Note that the star in "goto *" does not mean dereference, the expression means jump to an address pointer, we should really
write it as "goto*".

Now imagine that the compile C code for these instructions end up at memory addresses 0x3000, 0x3100, and 0x3200. When the
BEAM code is loaded the three move instructions in the code will be replaced by the memory addresses of the implementation of
the instructions. Imagine that the code ({move,{x,0},{x,1}}, {move,{y,0},{x,0}}, {move,{x,1},{y,0}})
is loaded at address 0x1000:
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/ 0x1000: 0x3000 -> 0x3000: OpCase(move_xx): x(Arg(1)) = x(Arg(0))
{move,{x,0},{x,1}} { 0x1004: 0x0 I += 3;

\ 0x1008: 0x1 Goto(*I);
/ 0x100c: 0x3200

{move,{y,0},{x,0}} { 0x1010: 0x1
\ 0x1014: 0x1
/ 0x1018: 0x3100

{move,{y,0},{x,0}} { 0x101c: 0x1
\ 0x1020: 0x1

The word at address 0x1000 points to the implementation of the move_xx instruction. If the register I contains the instruction
pointer, pointing to 0x1000 then the dispatch will be to fetch *I (i.e. 0x3000) and jump to that address. ("goto* *I")

In Chapter 7 we will look more closely at some real BEAM instructions and how they are implemented.

5.3 Scheduling: Non-preemptive, Reduction counting

Most modern multi-threading operating systems use preemptive scheduling. This means that the operating system decides when
to switch from one process to another, regardless of what the process is doing. This protects the other processes from a processes
misbehaving by not yielding in time.

In cooperative multitasking which uses a non-preemptive scheduler the running process decides when to yield. This has the
advantage that the yielding process can do so in a known state.

For example in a language such as Erlang with dynamic memory management and tagged values, an implementation may be
designed such that a process only yields when there are no untagged values in working memory.

Take the add instruction as an example, to add two Erlang integers, the emulator first has to untag the integers, then add them
together and then tag the result as an integer. If a fully preemptive scheduler is used there would be no guarantee that the process
isn’t suspended while the integers are untagged. Or the process could be suspended while it is creating a tuple on the heap,
leaving us with half a tuple. This would make it very hard to traverse a suspended process stack and heap.

On the language level all processes are running concurrently and the programmer should not have to deal with explicit yields.
BEAM solves this by keeping track of how long a process has been running. This is done by counting reductions. The term
originaly comes from the mathematical term beta-reduction used in lambda calculus.

The definition of a reduction in BEAM not very specific, but we can see it as a small piece of work, which shouldn’t take too
long. Each function call is counted as a reduction, and BEAM does a test upon entry to each function if the process has used up
all its reductions.

Since there are no loops in Erlang, only tail-recursive function calls, it is very hard to write a program that does any significant
amount of work without using up its reductions.

Warning
There are some bifs that can run for a long time only using 1 reduction, like term_to_binary and binary_to_t
erm. Try to make sure that you only call these biffs with small terms or binaries, or you might lock up the scheduler for
a very long time.
Also, if you write your own Nifs, make sure they can yield and that they bump the reduction counter by an amount
proportional to their run time.

We will go through the details of how the scheduler works in Chapter 11.

5.4 Memory Management: Garbage Collecting

Erlang supports garbage collection; as an Erlang progammer you do not need to do explicit memory management. On the BEAM
level, though, the code is responsible for checking for stack and heap overrun, and for allocating enough space on the stack and
the heap.
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The BEAM instruction test_heap will ensure that there is as much space on the heap as requested. If needed the instruction
will call the garbage collector to reclaim space on the heap. The garbage collector in turn will call the lower levels of the memory
subsystem to allocate or free memory as needed. We will look at the details of memory management and garbage collection in
Chapter 12.

5.5 BEAM: it is virtually unreal

The BEAM is a virtual machine, by that we mean that it is implemented in software instead of in hardware. There has been
projects to implement the BEAM by FPGA, and there is nothing stopping anyone from implementing the BEAM in hardware.
A better description might be to call the BEAM an Abstract machine, and see it as blueprint for a machine which can execute
BEAM code. And, in fact, the "am" in BEAM stands for "Abstract Machine".

In this book we will make no distinction between abstract machines, and virtual machines or their implementation. In a more
formal setting an abstract machine is a theoretical model of a computer, and a virtual machine is either a software implementation
of an abstract machine or a software emulator of a real physical machine.

Unfortunately there exist no official specification of the BEAM, it is currently only defined by the implementation in Erlang/OTP.
If you want to implement your own BEAM you would have to try to mimic the current implementation not knowing which parts
are essential and which parts are accidental. You would have to mimic every observable behavior to be sure that you have a valid
BEAM interpreter.

TODO: Conclusion and handover to the chapters on instructions.
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Chapter 6

Modules and The BEAM File Format (16p)

6.1 Modules

What is a module. How is code loaded. How does hot code loading work. How does the purging work. How does the code
server work. How does dynamic code loading work, the code search path. Handling code in a distributed system. (Overlap with
chapter 10, have to see what goes where.) Parameterized modules. How p-mods are implemented. The trick with p-mod calls.
Here follows an excerpt from the current draft:

6.2 The BEAM File Format

The definite source of information about the beam file format is obviously the source code of beam_lib.erl (see https://github.com/-
erlang/otp/blob/maint/lib/stdlib/src/beam_lib.erl). There is actually also a more readable but slightly dated description of the
format written by the main developer and maintainer of Beam (see http://www.erlang.se/~bjorn/beam_file_format.html).

The beam file format is based on the interchange file format (EA IFF)#, with two small changes. We will get to those shortly.
An IFF file starts with a header followed by a number of “chunks”. There are a number of standard chunk types in the IFF
specification dealing mainly with images and music. But the IFF standard also lets you specify your own named chunks, and this
is what BEAM does.

An IFF file looks like this:

{‘FORM’:4
SIZE:4
FORMTYPE:4
[{CHUNKNAME:4
CHUNKSIZE:4
[CHUNKDATA:1]:CHUNKSIZE
[2-BYTEPAD:1]:0..1

}
]:SIZE-4

}

Beam files differ from standard IFF files, in that each chunk is aligned on 4-byte boundary (i.e. 32 bit word) instead of on a 2-byte
boundary as in the IFF standard. To indicate that this isn’t a standard IFF file the IFF header is tagged with “FOR1” instead of
“FORM”. The IFF specification suggest this tag for future extensions.

The form type used by beam is “BEAM”. A beam file has the following layout:

{‘FOR1’:4
SIZE:4
‘BEAM’:4
[{CHUNKNAME:4

https://github.com/erlang/otp/blob/maint/lib/stdlib/src/beam_lib.erl
https://github.com/erlang/otp/blob/maint/lib/stdlib/src/beam_lib.erl
http://www.erlang.se/~bjorn/beam_file_format.html
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CHUNKSIZE:4
[CHUNKDATA:1]:CHUNKSIZE
[4-BYTEPAD:1]:0..3
}

]:SIZE-4
}

This file format prepends all areas with the size of the following area making it easy to parse the file directly while reading it
from disk. To illustrate the structure and content of beam files, we will write a small program that extract all the chunks from a
beam file. To make this program as simple and readable as possible we will not parse the file while reading, instead we load the
whole file in memory as a binary, and then parse each chunk. The first step is to get a list of all chunks:

-module(beamfile).
-export([read/1]).

read(Filename) ->
{ok, File} = file:read_file(Filename),
<<"FOR1",
Size:32/integer,
"BEAM",
Chunks/binary>> = File,

{Size, read_chunks(Chunks, [])}.

read_chunks(<<N,A,M,E, Size:32/integer, Tail/binary>>, Acc) ->
%% Align each chunk on even 4 bytes
ChunkLength = align_by_four(Size),
<<Chunk:ChunkLength/binary, Rest/binary>> = Tail,
read_chunks(Rest, [{[N,A,M,E], Size, Chunk}|Acc]);

read_chunks(<<>>, Acc) -> lists:reverse(Acc).

align_by_four(N) -> (4 * ((N+3) div 4)).

A sample run might look like:

> beamfile:read("beamfile.beam").
{848,
[{"Atom",103,

<<0,0,0,14,4,102,111,114,49,4,114,101,97,100,4,102,105,
108,101,9,114,101,97,...>>},

{"Code",341,
<<0,0,0,16,0,0,0,0,0,0,0,132,0,0,0,14,0,0,0,4,1,16,...>>},

{"StrT",8,<<"FOR1BEAM">>},
{"ImpT",88,<<0,0,0,7,0,0,0,3,0,0,0,4,0,0,0,1,0,0,0,7,...>>},
{"ExpT",40,<<0,0,0,3,0,0,0,13,0,0,0,1,0,0,0,13,0,0,0,...>>},
{"LocT",16,<<0,0,0,1,0,0,0,6,0,0,0,2,0,0,0,6>>},
{"Attr",40,
<<131,108,0,0,0,1,104,2,100,0,3,118,115,110,108,0,0,...>>},

{"CInf",130,
<<131,108,0,0,0,4,104,2,100,0,7,111,112,116,105,111,...>>},

{"Abst",0,<<>>}]}

Here we can see the chunk names that beam uses.

6.2.1 Atom table chunk

The chunk named Atom is mandatory and contains all atoms referred to by the module. The format of the atom chunk is:

{“Atom”:4
CHUNKSIZE:4
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NUMBEROFATOMS:4
[{LENGTH:1,
ATOM:LENGTH}]:NUMBEROFATOMS

[4-BYTEPAD:1]:0..3
}

NOTE: There is a further constraint that the module name must be stored as the first atom in the table.

Let us add a decoder for the atom chunk to our Beam file reader:

-module(beamfile).
-export([read/1]).

read(Filename) ->
{ok, File} = file:read_file(Filename),
<<"FOR1",
Size:32/integer,
"BEAM",
Chunks/binary>> = File,

{Size, parse_chunks(read_chunks(Chunks, []),[])}.

read_chunks(<<N,A,M,E, Size:32/integer, Tail/binary>>, Acc) ->
%% Align each chunk on even 4 bytes
ChunkLength = align_by_four(Size),
<<Chunk:ChunkLength/binary, Rest/binary>> = Tail,
read_chunks(Rest, [{[N,A,M,E], Size, Chunk}|Acc]);

read_chunks(<<>>, Acc) -> lists:reverse(Acc).

parse_chunks([{"Atom", _Size,
<<_Numberofatoms:32/integer, Atoms/binary>>}

| Rest], Acc) ->
parse_chunks(Rest,[{atoms,parse_atoms(Atoms)}|Acc]);

parse_chunks([Chunk|Rest], Acc) -> %% Not yet implemented chunk
parse_chunks(Rest, [Chunk|Acc]);

parse_chunks([],Acc) -> Acc.

parse_atoms(<<Atomlength, Atom:Atomlength/binary, Rest/binary>>) when Atomlength > 0->
[list_to_atom(binary_to_list(Atom)) | parse_atoms(Rest)];

parse_atoms(_Alignment) -> [].

align_by_four(N) -> (4 * ((N+3) div 4)).

6.2.2 Export table chunk

The chunk named “ExpT” (for EXPort Table) is mandatory and contains information about which functions are exported.

The format of the chunk is:

{“ExpT”:4
CHUNKSIZE:4
NUMBEROFENTRIES:4
[{FUNCTION:4,
ARITY:4,
LABEL:4
}]:NUMBEROFENTRIES

}

We can extend our parse_chunk function by adding the following clause after the atom handling clause:

parse_chunks([{"ExpT", _Size,
<<_Numberofentries:32/integer, Exports/binary>>}
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| Rest], Acc) ->
parse_chunks(Rest,[{exports,parse_exports(Exports)}|Acc]);

...

parse_exports(<<Function:32/integer,
Arity:32/integer,
Label:32/integer,
Rest/binary>>) ->

[{Function, Arity, Label} | parse_exports(Rest)];
parse_exports(<<>>) -> [].

6.2.3 Import table chunk

The chunk named “ImpT” (for IMPort Table) is mandatory and contains information about which functions are imported.

The format of the chunk is:

{“ImpT”:4
CHUNKSIZE:4
NUMBEROFENTRIES:4
[{FUNCTION:4,
ARITY:4,
LABEL:4
}]:NUMBEROFENTRIES

}

The code for parsing the import table is basically the same as that for parsing the export table, and we can actually use the same
function to parse entries in both tables. See the full code at the end of the chapter.

6.2.4 Code Chunk

The chunk named “Code” contains the beam code for the module and is mandatory. The format of the chunk is:

{“Code”:4
CHUNKSIZE:4
SUBSIZE:4
INSTRUCTIONSET:4
OPCODEMAX:4
NUMBEROFLABELS:4
NUMBEROFFUNCTIONS:4
[OPCODE:1]:(CHUNKSIZE-SUBSIZE)
[4-BYTEPAD:1]:0..3

}

The field SUBSIZE stores the number of words before the code starts. This makes it possible to add new information fields in
the code chunk without breaking older loaders. The INSTRUCTIONSET field indicates which version of the instruction set the
file uses. The version number is increased if any instruction is changed in an incompatible way.

The OPCODEMAX field indicates the highest number of any opcode used in the code. New instructions can be added to the
system in a way such that older loaders still can load a newer file as long as the instructions used in the file are within the range
the loader knows about.

The field NUMBEROFLABELS contains the number of labels so that a loader can preallocate a label table of the right size. The
field NUMBEROFFUNCTIONS contains the number of functions so that a loader can preallocate a functions table of the right
size.

We can parse out the code chunk by adding the following code to our program:
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parse_chunks([{"Code", Size, <<SubSize:32/integer,Chunk/binary>>
} | Rest], Acc) ->

<<Info:SubSize/binary, Code/binary>> = Chunk,
%% 8 is size of CunkSize & SubSize
OpcodeSize = Size - SubSize - 8,
<<OpCodes:OpcodeSize/binary, _Align/binary>> = Code,
parse_chunks(Rest,[{code,parse_code_info(Info), OpCodes}

| Acc]);

..

parse_code_info(<<Instructionset:32/integer,
OpcodeMax:32/integer,
NumberOfLabels:32/integer,
NumberOfFunctions:32/integer,
Rest/binary>>) ->

[{instructionset, Instructionset},
{opcodemax, OpcodeMax},
{numberoflabels, NumberOfLabels},
{numberofFunctions, NumberOfFunctions} |
case Rest of

<<>> -> [];
_ -> [{newinfo, Rest}]

end].

We will learn how to decode the beam instructions in a later chapter, aptly named “BEAM Instructions”.

6.2.5 String table chunk

The chunk named “StrT” is mandatory and contains all constant string literals in the module as one long string. If there are no
string literals the chunks should still be present but empty and of size 0.

The format of the chunk is:

{“StrT”:4
CHUNKSIZE:4
[STRINGBYTE]:CHUNKSIZE
[4-BYTEPAD:1]:0..3

}

The string chunk can be parsed easilly by just turning the string of bytes into a binary:

parse_chunks([{"StrT", _Size, <<Strings/binary>>} | Rest], Acc) ->
parse_chunks(Rest,[{strings,binary_to_list(Strings)}|Acc]);

6.2.6 Attributes Chunk

The chunk named "Attr" is optional, but some OTP tools expect the attributes to be present. The releashandler expect the "vsn"
attribute to be present. You can get the version attribute from a file with: beam_lib:version(Filename), this function assumes that
there is an attribute chunk with a "vsn" attribute present.

The format of the chunk is:

{"Attr":4
CHUNKSIZE:4
ATTRIBUTES:CHUNKSIZE
[4-BYTEPAD]:0..3

}
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We can parse the attribute chunk like this:

parse_chunks([{"Attr", Size, Chunk} | Rest], Acc) ->
<<Bin:Size/binary, _Pad/binary>> = Chunk,
Attribs = binary_to_term(Bin),
parse_chunks(Rest,[{attributes,Attribs}|Acc]);

6.2.7 Compilation Information Chunk

The chunk named "CInf" is optional, but some OTP tools expect the information to be present.

The format of the chunk is:

{"CInf":4
CHUNKSIZE:4
INFORMATION:CHUNKSIZE
[4-BYTEPAD]:0..3

}

We can parse the compilation information chunk like this:

parse_chunks([{"CInf", Size, Chunk} | Rest], Acc) ->
<<Bin:Size/binary, _Pad/binary>> = Chunk,
CInfo = binary_to_term(Bin),
parse_chunks(Rest,[{compile_info,CInfo}|Acc]);

6.2.8 Local Function Table Chunk

The chunk named "LocT" is optional and intended for cross reference tools.

The format is the same as that of the export table:

{"LocT":4
CHUNKSIZE:4
NUMBEROFENTRIES:4
[{FUNCTION:4,
ARITY:4,
LABEL:4
}]:NUMBEROFENTRIES

}

The code for parsing the local function table is basically the same as that for parsing the export and the import table, and we can
actually use the same function to parse entries in all tables. See the full code at the end of the chapter.

6.2.9 Literal Table Chunk

The chunk named "LitT" is optional and contains compressed code literals. The format of the chunk is:

{"LitT":4
CHUNKSIZE:4
COMPRESSEDTABLESIZE:4
<NUMBEROFLITERALS:4,
[{SIZE:4

LITERAL:SIZE
}]:NUMBEROFLITERALS

}>:COMPRESSEDTABLESIZE
}



The Erlang Runtime System 60 / 137

The whole table is compressed with zlib:compress/1, and can be uncompressed with zlib_uncompress/1.

We can parse the chunk like this

parse_chunks([{"LitT", _ChunkSize,
<<_CompressedTableSize:32, Compressed/binary>>}

| Rest], Acc) ->
<<_NumLiterals:32,Table/binary>> = zlib:uncompress(Compressed),
Literals = parse_literals(Table),
parse_chunks(Rest,[{literals,Literals}|Acc]);

. . .

parse_literals(<<Size:32,Literal:Size/binary,Tail/binary>>) ->
[binary_to_term(Literal) | parse_literals(Tail)];

parse_literals(<<>>) -> [].

6.2.10 Abstract Code Chunk

The chunk named "Abst" is optional and may contain the code in abstract form. If you give the flag debug_info to the compiler
it will store the abstract syntax tree for the module in this chunk. OTP tools like the debugger and Xref need the abstract form.
The format of the chunk is:

{"Abst":4
CHUNKSIZE:4
[ABSTRACTCODE]:CHUNKSIZE
[4-BYTEPAD:1]:0..3

}

We can parse the chunk like this

parse_chunks([{"Abst", _ChunkSize, <<>>} | Rest], Acc) ->
parse_chunks(Rest,Acc);

parse_chunks([{"Abst", _ChunkSize, <<AbstractCode/binary>>} | Rest], Acc) ->
parse_chunks(Rest,[{abstract_code,binary_to_term(AbstractCode)}|Acc]);

6.2.11 Compression and Encryption

TODO

6.2.12 Function Trace Chunk (Obsolete)

This chunk type is now obsolete.

6.2.13 Bringing it all Together

TODO
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Chapter 7

Generic BEAM Instructions (25p)

Beam has two different instructions sets, an internal instructions set, called specific, and an external instruction set, called generic.

The generic instruction set is what could be called the official instruction set, this is the set of instructions used by both the
compiler and the Beam interpreter. If there was an official Erlang Virtual Machine specification it would specify this instruction
set. If you want to write your own compiler to the Beam, this is the instruction set you should target. If you want to write your
own EVM this is the instruction set you should handle.

The external instruction set is quite stable, but it does change between Erlang versions, especially between major versions.

This is the instruction set which we will cover in this chapter.

The other instruction set, the specific, is an optimized instruction set used by the Beam to implement the external instruction set.
To give you an understanding of how the Beam works we will cover this instruction set in Chapter 10. The internal instruction
set can change without warning between minor version or even in patch releases. Basing any tool on the internal instruction set
is risky.

In this chapter I will go through the general syntax for the instructions and some instruction groups in detail, a complete list of
instructions with short descriptions can be found in Appendix .1.

7.1 Instruction definitions

The names and opcodes of the generic instructions are defined in lib/compiler/src/genop.tab.

The file contains a version number for the Beam instruction format, which also is wirtten to .beam files. This number has so far
never changed and is still at version 0. If the external format would be changed in a non backwards compatible way this number
would be changed.

The file genop.tab is used as input by beam_makeops which is a perl script which generate code from the ops tabs. The
generator is used both to generate Erlang code for the compiler (beam_opcodes.hrl and beam_opcodes.erl) and to generate C
code for the emulator ( TODO: Filenames).

Any line in the file starting with "#" is a comment and ignored by beam_makeops. The file can contain definitions, which turns
into a binding in the perl script, of the form:

NAME=EXPR

Like, e.g.:

BEAM_FORMAT_NUMBER=0

The Beam format number is the same as the instructionset field in the external beam format. It is only bumped when a
backwards icnompatible change to the instruction set is made.

The main content of the file are the opcode definitions of the form:
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OPNUM: [-]NAME/ARITY

Where OPNUM and ARITY are integers, NAME is an identifier starting with a lowercase letter (a-z), and :, -, and / are litterals.

For example:

1: label/1

The minus sign (-) indicates a depricated function. A depricated function keeps its opcode in order for the loader to be sort of
backwards compatible (it will recognize depricated instructions and refuse to load the code).

In the rest of this Chapter we will go through some BEAM instructions in detail. For a full list with brief descriptions see:
Appendix .1.

7.2 BEAM code listings

As we saw in Chapter 2 we can give the option S to the Erlang compiler to get a .S file with the BEAM code for the module in
a human and machine readable format (actually as Erlang terms).

Given the file beamexample1.erl: -module(beamexample1). -export([id/1]). id(I) when is_integer(I) -> I.

When compiled with erlc -S beamexample.erl we get the following beamexmaple.S file: {module, beamexample1}.
%% version = 0 {exports, [{id,1},{module_info,0},{module_info,1}]}. {attributes, []}. {labels, 7}. {function, id, 1, 2}. {la-
bel,1}. {line,[{location,"beamexample1.erl",5}]}. {func_info,{atom,beamexample1},{atom,id},1}. {label,2}. {test,is_integer,{f,1},[{x,0}]}.
return. {function, module_info, 0, 4}. {label,3}. {line,[]}. {func_info,{atom,beamexample1},{atom,module_info},0}. {la-
bel,4}. {move,{atom,beamexample1},{x,0}}. {line,[]}. {call_ext_only,1,{extfunc,erlang,get_module_info,1}}. {function,
module_info, 1, 6}. {label,5}. {line,[]}. {func_info,{atom,beamexample1},{atom,module_info},1}. {label,6}. {move,{x,0},{x,1}}.
{move,{atom,beamexample1},{x,0}}. {line,[]}. {call_ext_only,2,{extfunc,erlang,get_module_info,2}}.

In addition to the actual beam code for the integer identity function we also get some meta instructions.

The first line {module, beamexample1}.%% version =0 tells us the module name "beamexample1" and the version
number for the instruction set "0".

Then we get a list of exported functions "id/1, module_info/0, module_info/1". As we can see the compiler has added two auto
generated functions to the code. These two functions are just dispatchers to the generic module info BIFs (erlang:module_info/1
and erlang:module_info/2) with the name of the module added as the first argument.

The line {attributes, []} list all defined compiler attributes, none in our case.

Then we get to know that there are less than 7 labels in the module, {labels, 7}, which makes it easy to do code loading in
one pass.

The last type of meta instruction is the function instruction on the format {function, Name, Arity, StartLab
el}. As we can see with the id function the start label is actually the second label in the code of the function.

The instruction {label, N} is not really an instruction, it does not take up any space in memory when loaded. It is just to
give a local name (or number) to a position in the code. Each label potentially marks the beginning of a basic block since it is a
potential destination of a jump.

The first two instructions following the first label ({label,1}) are actually error generating code which adds the line number
and module, function and arity information and throws an exception. That are the instructions line and func_info.

The meat of the function is after {label,2}, the instruction {test,is_integer,{f,1},[{x,0}]}. The test instruction
tests if its arguments (in the list at the end, that is variable {x,0} in this case) fulfills the test, in this case is an integer (is_integer).
If the test succeeds the next instruction (return) is executed. Otherwise the functions fails to label 1 ({f,1}), that is, execution
continues at label one where a function clause exception is thrown.

The other two functions in the file are auto generated. If we look at the second function the instruction {move,{x,0},{x
,1}} moves the argument in register x0 to the second argument register x1. Then the instruction {move,{atom,beamex
ample1},{x,0}} moves the module name atom to the first argument register x1. Finally a tail call is made to erlang:
get_module_info/2 ({call_ext_only,2,{extfunc,erlang,get_module_info,2}}). As we will see in the
next section there are several different call instructions.
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7.3 Calls

As we have seen in Chapter 8 there are several different types of calls in Erlang. To distinguish between local and remote calls
in the instruction set, remote calls have _ext in their instruction names. Local calls just have a label in the code of the module,
while remote calls takes a destination of the form {extfunc, Module, Function, Arity}.

To distinguish between ordinary (stack building) calls and tail-recursive calls, the latter have either _only or _last in their
name. The variant with _last will also deallocate as many stack slot as given by the last argument.

There is also a call_fun Arity instruction that calls the closure stored in register {x, Arity}. The arguments are stored in
x0 to {x, Arity-1}.

For a full listing of all types of call instructions see Appendix .1.

7.4 Stack (and Heap) Management

The stack and the heap of an Erlang process on Beam share the same memory area see Chapter 3 and Chapter 12 for a full
discussion. The stack grows toward lower addresses and the heap toward higher addresses. Beam will do a garbage collection if
more space than what is available is needed on either the stack or the heap.

A leaf function A leaf function is a function which doesn’t call any other function.

A non leaf function A non leaf function is a function which may call another function.

On entry to a non leaf function the continuation pointer (CP) is saved on the stack, and on exit it is read back from the stack.
This is done by the allocate and deallocate instructions, which are used for setting up and tearing down the stack frame
for the current instruction.

A function skeleton for a leaf function looks like this: {function, Name, Arity, StartLabel}. {label,L1}. {func_info,{atom,Module},{atom,Name},Arity}.
{label,L2}. ... return.

A function skeleton for a non leaf function looks like this: {function, Name, Arity, StartLabel}. {label,L1}. {func_info,{atom,Module},{atom,Name},Arity}.
{label,L2}. {allocate,Need,Live}. ... call ... ... {deallocate,Need}. return.

The instruction allocate StackNeed Live saves the continuation pointer (CP) and allocate space for StackNeed extra
words on the stack. If a GC is needed during allocation save Live number of X registers. E.g. if Live is 2 then registers X0
and X1 are saved.

When allocating on the stack, the stack pointer (E) is decreased. Before After | xxx | | xxx | E -> | xxx | | xxx | | | | ??? | caller save
slot ... E -> | CP | ... ... HTOP -> | | HTOP -> | | | xxx | | xxx |

For a full listing of all types of allocate and deallocate instructions see Appendix .1.

7.5 Message Passing

Sending a message is straight forward in beam code. You just use the send instruction. Note though that the send instruction
does not take any arguments, it is more like a function call. It assumes that the arguments (the destination and the message) are
in the argument registers X0 and X1. The message is also copied from X1 to X0.

Receiving a message is a bit more complicated since it involves both selective receive with pattern matching and introduces a
yield/resume point within a function body. (There is also a special feature to minimize message queue scanning using refs, more
on that later.)
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7.5.1 A Minimal Receive Loop

A minimal receive loop, which accepts any message and has no timeout (e.g. receive _ → ok end) looks like this in
BEAM code:

L1: loop_rec L2 x0
remove_message
...
jump L3

L2: wait L1

L3: ...

Figure 7.1: A simple receive loop.

The loop_rec L2 x0 instruction first checks if there is any message in the message queue. If there are no messages execution
jumps to L2, where the process will be suspended waiting for a message to arrive.

If there is a message in the message queue the loop_rec instruction also moves the message from the m-buf to the process
heap. See Chapter 12 and Chapter 3 for details of the m-buf handling.

For code like receive _ → ok end, where we accept any messages, there is no pattern matching needed, we just do a
remove_message which unlinks the next message from the message queue and stores a pointer in X0. (It also removes any
timeout, more on this soon.)

7.5.2 A Selective Receive Loop

For a selective receive like e.g. receive [] → ok end we will loop over the message queue to check if any message in
the queue matches.

L2: loop_rec L4 X0
test is_nil L3 X0
remove_message
move {atom,ok} X0
return

L3: loop_rec_end L2
L4: wait L2

Figure 7.2: A selective receive loop.

In this case we do a pattern match for Nil after the loop_rec instruction if there was a message in the mailbox. If the message
doesn’t match we end up at L3 where the instruction loop_rec_end advances the save pointer to the next message (p→msg.
save =&(*p→msg.save)→next) and jumps back to L2.

If there are no more messages in the message queue the process is suspended by the wait instruction at L4 with the save pointer
pointing to the end of the message queue. When the processes is rescheduled it will only look at new messages in the message
queue (after the save point).
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7.5.3 A Receive Loop With a Timeout

If we add a timeout to our selective receive the wait instruction is replaced by a wait_timeout instruction followed by a timeout
instruction and the code following the timeout.

L6: loop_rec L8 X0
test is_nil L7 X0
remove_message
move {atom,ok} X0
return

L7: loop_rec_end L6
L8: wait_timeout L6 {integer,1000}

timeout
move {atom,done} X0
return

Figure 7.3: A receive loop with a timeout.

The wait_timeout instructions sets up a timeout timer with the given time (1000 ms in our example) and it also saves the
address of the next instruction (the timeout) in p→def_arg_reg[0] and then when the timer is set, p→i is set to point to
def_arg_reg.

This means that if no matching message arrives while the process is suspended a timeout will be triggered after 1 second and
execution for the process will continue at the timeout instruction.

Note that if a message that doesn’t match arrives in the mailbox, the process is scheduled for execution and will run the pattern
matching code in the receive loop, but the timeout will not be canceled. It is the remove_message code which also removes
any timeout timer.

The timeout instruction resets the save point of the mailbox to the first element in the queue, and clears the timeout flag
(F_TIMO) from the PCB.

7.5.4 The Synchronous Call Trick (aka The Ref Trick)

We have now come to the last version of our receive loop, where we use the ref trick alluded to earlier to avoid a long message
box scan.

A common pattern in Erlang code is to implement a type of "remote call" with send and a receive between two processes. This is
for example used by gen_server. This code is often hidden behind a library of ordinary function calls. E.g., you call the function
counter:increment(Counter) and behind the scene this turns into something like Counter ! {self(), inc},
receive {Counter, Count} → Count end.

This is usually a nice abstraction to encapsulate state in a process. There is a slight problem though when the mailbox of the
calling process has many messages in it. In this case the receive will have to check each message in the mailbox to find out that
no message except the last matches the return message.

This can quite often happen if you have a server that receives many messages and for each message does a number of such remote
calls, if there is no back throttle in place the servers message queue will fill up.

To remedy this there is a hack in ERTS to recognize this pattern and avoid scanning the whole message queue for the return
message.

The compiler recognizes code that uses a newly created reference (ref) in a receive (see Figure 7.4), and emits code to avoid the
long inbox scan since the new ref can not already be in the inbox.
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Ref = make_ref(),
Counter ! {self(), inc, Ref},
receive
{Ref, Count} -> Count

end.

Figure 7.4: The Ref Trick Pattern.

This gives us the following skeleton for a complete receive, see Figure 7.5.

...
recv_mark L11
call_ext 0 {extfunc,erlang,make_ref,0}
...

recv_set L11
L11: loop_rec L13 x0

test is_eq_exact L12 [X0, Y0]
remove_message
...

L12: loop_rec_end L11
L13: wait_timeout L11 {integer,1000}

timeout.
...

Figure 7.5: A receive with the ref_trick.

The recv_mark instruction saves the current position (the end msg.last) in msg.saved_last and the address of the label
in msg.mark

The recv_set instruction checks that msg.mark points to the next instruction and in that case moves the save point (msg.
save) to the last message received before the creation of the ref (msg.saved_last). If the mark is invalid ( i.e. not equal to
msg.save) the instruction does nothing.
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Chapter 8

Different Types of Calls, Linking and Hot Code
Loading (5p)

Local calls, remote calls, closure calls, tuple calls, p-mod calls. The code server. Linking. Hot code loading, purging.
(Overlap with Chapter 4, have to see what goes where.) Higher order functions, Implementation of higher order functions.
Higher order functions and hot code loading. Higher order functions in a distributed system.

8.1 Hot Code Loading

In Erlang there is a semantic difference between a local function call and a remote function call. A remote call, that is a call to a
function in a named module, is guaranteed to go to the latest loaded version of that module. A local call, a unqualified call to a
function within the same module, is guaranteed to go to the same version of the code as the caller.

A call to a local function can be turned into a remote call by specifying the module name at the call site. This is usually done
with the ?MODULE macro as in ?MODULE:foo(). A remote call to a non local module can not be turned into a local call, i.e.
there is no way to guarantee the version of the callee in the caller.

This is an important feature of Erlang which makes hot code loading or hot upgrades possible. Just make sure you have a remote
call somewhere in your server loop and you can then load new code into the system while it is running; when execution reaches
the remote call it will switch to executing the new code.

A common way of writing server loops is to have a local call for the main loop and a code upgrade handler which does a remote
call and possibly a state upgrade:

loop(State) ->
receive
upgrade ->

NewState = ?MODULE:code_upgrade(State),
?MODULE:loop(NewState);

Msg ->
NewState = handle_msg(Msg, State),
loop(NewState)

end.

With this construct, which is basically what gen_server uses, the programmer has control over when and how a code upgrade is
done.

The hot code upgrade is one of the most important features of Erlang which makes it possible to write servers that operates 24/7
year out and year in. It is also one of the main reasons why Erlang is dynamically typed. It is very hard in a statically typed
language to give type for the code_upgrade function. (It is also hard to give the type of the loop function) These types will change
in the future as the type of State changes to handle new features.
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For a language implementer concerned with performance, the hot code loading functionality is a burden though. Since each call
to or from a remote module can change to new code in the future it is very hard to do whole program optimization across module
boundaries. (Hard but not impossible, there are solutions but so far I have not seen one fully implemented.)

8.2 Code Loading

In the Erlang Runtime System the code loading is handled by the code server. The code server will call the lover level bifs in the
erlang module for the actual loading. But the code server also determines the purging policy.

The runtime system can keep two versions of each module, a current version and an old version. All fully qualified (remote)
calls goes to the current version. Local calls in the old version and return addresses on the stack can still go to the old version.

If a third version of a module is loaded and there still are processes running (have pointers on the stack to) old code the code
server will kill does processes and purge the old code. Then the current version will become old and the third version will be
loaded as the current version.

8.3 Transforming from Generic to Specific instructions

The BEAM loader does not just take the external beam format and writes it to memory. It also does a number of transformations
on the code and translates from the external (generic) format to the internal (specific) format.

The code for the loader can be found in beam_load.c (in erts/emulator/) but most of the logic for the translations are
in the file ops.tab (in the same directory).

The first step of the loader is to parse beam file, basically the same work as we did in Erlang in Chapter 6 but written in C.

Then the rules in ops.tab are applied to instructions in the code chunk to translate the generic instruction to one or more specific
instructions.

The translation table works through pattern matching. Each line in the file defines a pattern of one or more generic instructions
with arguments and optionally an arrow followed by one or more instructions to translate to.

The transformations in ops tab tries to handle patterns of instructions generated by the compiler and peephole optimize them to
fewer specific instructions. The ops tab transformations tries to generate jump tables for patterns of selects.

The file ops.tab is not parsed at runtime, instead a pattern matching program is generated from ops.tab and stored in an array in a
generated C file. The perl script beam_makeops (in erts/emulator/utils) generates a target specific set of opcodes and
translation programs in the files beam_opcodes.h and beam_opcodes.c (these files end up in the given target directory
e.g. erts/emulator/x86_64-unknown-linux-gnu/opt/smp/).

The same program (beam_makeops) also generates the Erlang code for the compiler back end beam_opcodes.erl.
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Chapter 9

The BEAM Loader

9.1 Transforming from Generic to Specific instructions

The BEAM loader does not just take the external beam format and writes it to memory. It also does a number of transformations
on the code and translates from the external (generic) format to the internal (specific) format.

The code for the loader can be found in beam_load.c (in erts/emulator/) but most of the logic for the translations are
in the file ops.tab (in the same directory).

The first step of the loader is to parse beam file, basically the same work as we did in Erlang in Chapter 6 but written in C.

Then the rules in ops.tab are applied to instructions in the code chunk to translate the generic instruction to one or more specific
instructions.

The translation table works through pattern matching. Each line in the file defines a pattern of one or more generic instructions
with arguments and optionally an arrow followed by one or more instructions to translate to.

The transformations in ops tab tries to handle patterns of instructions generated by the compiler and peephole optimize them to
fewer specific instructions. The ops tab transformations tries to generate jump tables for patterns of selects.

The file ops.tab is not parsed at runtime, instead a pattern matching program is generated from ops.tab and stored in an array in a
generated C file. The perl script beam_makeops (in erts/emulator/utils) generates a target specific set of opcodes and
translation programs in the files beam_opcodes.h and beam_opcodes.c (these files end up in the given target directory
e.g. erts/emulator/x86_64-unknown-linux-gnu/opt/smp/).

The same program (beam_makeops) also generates the Erlang code for the compiler back end beam_opcodes.erl.
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Chapter 10

BEAM Internal Instructions



The Erlang Runtime System 71 / 137

Chapter 11

Scheduling

To fully understand where time in an ERTS system is spent you need to understand how the system decides which Erlang code
to run and when to run it. These decisions are made by the Scheduler.

The scheduler is responsible for the real-time guarantees of the system. In a strict Computer Science definition of the word
real-time, a real-time system have to be able to guarantee a response within a specified time. That is, there are real deadlines and
each task has to complete before its deadline. In Erlang there are no such guarantees, a timeout in Erlang is only guaranteed to
not trigger before the given deadline.

In a general system like Erlang where we want to be able to handle all sorts of programs and loads, the scheduler will have to
make some compromises. There will always be corner cases where a generic scheduler will behave badly. After reading this
chapter you will have a deeper understanding of how the Erlang scheduler works and especially when it might not work optimally.
You should be able to design your system to avoid the corner cases and you should also be able to analyze a misbehaving system.

11.1 Concurrency, Parallelism, and Preemptive Multitasking

Erlang is a concurrent language. When we say that processes run concurrently we mean that for an outside observer it looks like
two processes are executing at the same time. In a single core system this is achieved by preemptive multitasking. This means
that one process will run for a while, and then the scheduler of the virtual machine will suspend it and let another process run.

In a multicore or a distributed system we can achieve true parallelism, that is, two or more processes actually executing at the
exact same time. In an SMP enabled emulator the system uses several OS threads to indirectly execute Erlang processes by
running one scheduler and emulator per thread. In a system using the default settings for ERTS there will be one thread per
enabled core (physical or hyper threaded).

We can check that we have a system capable of parallel execution, by checking if SMP support is enabled:

iex(1)> :erlang.system_info :smp_support
true

We can also check how many schedulers we have running in the system:

iex(2)> :erlang.system_info :schedulers_online
4

We can see this information in the Observer as shown in the figure below.

If we spawn more processes than we have have schedulers and let them do some busy work we can see that there are a number of
processes running in parallel and some processes that are runnable but not currently running. We can see this with the function
erlang:process_info/2.

1> Loop = fun (0, _) -> ok; (N, F) -> F(N-1, F) end,
BusyFun = fun() -> spawn(fun () -> Loop(1000000, Loop) end) end,
SpawnThem = fun(N) -> [ BusyFun() || _ <- lists:seq(1, N)] end,
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GetStatus = fun() -> lists:sort([{erlang:process_info(P, [status]), P}
|| P <- erlang:processes()]) end,

RunThem = fun (N) -> SpawnThem(N), GetStatus() end,
RunThem(8).

[{[{status,garbage_collecting}],<0.62.0>},
{[{status,garbage_collecting}],<0.66.0>},
{[{status,runnable}],<0.60.0>},
{[{status,runnable}],<0.61.0>},
{[{status,runnable}],<0.63.0>},
{[{status,runnable}],<0.65.0>},
{[{status,runnable}],<0.67.0>},
{[{status,running}],<0.58.0>},
{[{status,running}],<0.64.0>},
{[{status,waiting}],<0.0.0>},
{[{status,waiting}],<0.1.0>},

...

We will look closer at the different statuses that a process can have later in this chapter, but for now all we need to know is that
a process that is running or garbage_collecting is actually running in on a scheduler. Since the machine in the example has four
cores and four schedulers there are four process running in parallel (the shell process and three of the busy processes). There are
also five busy processes waiting to run in the state runnable.

By using the Load Charts tab in the Observer we can see that all four schedulers are fully loaded while the busy processes
execute.

observer:start().
ok
3> RunThem(8).
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11.2 Preemptive Multitasking in ERTS Cooperating in C

The preemptive multitasking on the Erlang level is achieved by cooperative multitasking on the C level. The Erlang language,
the compiler and the virtual machine works together to ensure that the execution of an Erlang process will yield within a limited
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time and let the net process run. The technique used to measure and limit the allowed execution time is called reduction counting,
we will look at all the details of reduction counting soon.

11.3 Reductions

One can describe the scheduling in BEAM as preemptive scheduling on top of cooperative scheduling. A process can only be
suspended at certain points of the execution, such as at a receive or a function call. In that way the scheduling is cooperative---a
process has to execute code which allows for suspension. The nature of Erlang code makes it almost impossible for a process to
run for a long time without doing a function call. There are a few Built In Functions (BIFs) that still can take too long without
yielding. Also, if you call C code in a badly implemented Native Implemented Function (NIF) you might block one scheduler
for a long time. We will look at how to write well behaved NIFs in <ref linkend="ch.c"/>.)

Since there are no other loop constructs than recursion and list comprehensions, there is no way to loop forever without doing a
function call. Each function call is counted as a reduction; when the reduction limit for the process is reached it is suspended.

Note
Reductions The term reduction comes from the Prolog ancestry of Erlang. In Prolog each execution step is a goal-reduction,
where each step reduces a logic problem into its constituent parts, and then tries to solve each part.

11.3.1 How Many Reductions Will You Get?

When a process is scheduled it will get a number of reductions defined by CONTEXT_REDS (defined in erl_vm.h, currently
as 2000). After using up its reductions or when doing a receive without a matching message in the inbox, the process will be
suspended and a new processes will be scheduled.

If the VM has executed as many reductions as defined by INPUT_REDUCTIONS (currently 2*CONTEXT_REDS, also defined
in erl_vm.h) or if there is no process ready to run the scheduler will do system-level activities. That is, basically, check for
IO; we will cover the details soon.

11.3.2 What is a Reduction Really?

It is not completely defined what a reduction is, but at least each function call should be counted as a reduction. Things get a
bit more complicated when talking about BIFs and NIFs. A process should not be able to run for "a long time" without using a
reduction and yielding. A function written in C can not yield in the middle, it has to make sure it is in a clean state and return. In
order to be re-entrant it has to save its internal state somehow before it returns and then set up the state again on re-entry. This
can be very costly, especially for a function that sometimes only does little work and sometimes lot. The reason for writing a
function in C instead of Erlang is usually to achieve performance and to not do unnecessary book keeping work. Since there is no
clear definition of what one reduction is, other than a function call on the Erlang level, there is a risk that a function implemented
in C takes many more clock cycles per reduction than a normal Erlang function. This can lead to an imbalance in the scheduler,
and even starvation.

For example in Erlang versions prior to R16, the BIFs binary_to_term/1 and term_to_binary/1 were non yielding
and only counted as one reduction. This meant that a process calling these functions on large terms could starve other processes.
This can even happen in a SMP system because of the way processes are balanced between schedulers, which we will get to
soon.

While a process is running the emulator keeps the number of reductions left to execute in the (register mapped) variable FCALLS
(see beam_emu.c).

We can examine this value with hipe_bifs:show_pcb/1: iex(13)> :hipe_bifs.show_pcb self P: 0x00007efd7c2c0400 -----
------------------------------------------------------------ Offset| Name | Value | *Value | 0 | id | 0x00000270000004e3 | | ... 328 | rcount
| 0x0000000000000000 | | 336 | reds | 0x000000000000a528 | | ... 320 | fcalls | 0x00000000000004a3 | |

The field reds keep track of the total number of reductions a process has done up until it was last suspended. By monitoring
this number you can see which processes do the most work.
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You can see the total number of reductions for a process (the reds field) by calling erlang:process_info/2 with the atom
reductions as the second argument. You can also see this number in the process tab in the observer or with the i/0 command
in the Erlang shell.

As noted earlier, each time a process starts the field fcalls is set to the value of CONTEXT_REDS and for each function call the
process executes fcalls is reduced by 1. When the process is suspended the field reds is increased by the number of executed
reductions. In some C like code something like: p->reds +=(CONTEXT_REDS -p->fcalls).

Normally a process would do all its alloted reductions and fcalls would be 0 at this point, but if the process suspends in a
receive waiting for a message it will have some reductions left.

When a process uses up all its reductions it will yield to let another process run, it will go from the process state running to the
state runnable, if it yields in a receive it will instead go into the state waiting (for a message). In the next section we will take a
look at all the different states a process can be in.

11.4 The Process State (or status)

The field status in the PCB contains the process state. It can be one of free, runnable, waiting, running, exiting, garbing, and
suspended. When a process exits it is marked as free---you should never be able to see a process in this state, it is a short lived
state where the process no longer exist as far as the rest of the system is concerned but there is still some clean up to be done
(freeing memory and other resources).

Each process status represents a state in the Process State Machine. Events such as a timeout or a delivered message triggers
transitions along the edges in the state machine. The Process State Machine looks like this:

+--------+
| free |

+-----------+ | |
+---> suspended | +---^----+
| +-+ | |
| | ++-------^^-+ +---+----+
| | | || | exiting|
| | | || | |
| | | || +---^----+
| | | ||suspend |
| | | |+--------+ |
| | | resume| | | exit
| | | | | |
| | +v-------+--+ +-+--+-----+ GC +----------+
| | | runnable |+-->| running +--------> garbing |
| | | | | <--------+ |
| | +^------^---+ +----+-----+ +----------+
| | | | |
| | | msg | timeout | receive
| | | | |
| | | | |
| | | | +----v-----+
| | | +--------+ waiting |
| | +---------------+ |
| | +^---+-----+
| |resume | |
| +-------------------+ |suspend
+-------------------------+

The normal states for a process are runnable, waiting, and running. A running process is currently executing code in one of the
schedulers. When a process enters a receive and there is no matching message in the message queue, the process will become
waiting until a message arrives or a timeout occurs. If a process uses up all its reductions, it will become runnable and wait for a
scheduler to pick it up again. A waiting process receiving a message or a timeout will become runnable.

Whenever a process needs to do garbage collection, it will go into the garbing state until the GC is done. While it is doing GC is
saves the old state in the field gcstatus and when it is done it sets the state back to the old state using gcstatus.
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The suspended state is only supposed to be used for debugging purposes. You can call erlang:suspend_process/2
on another process to force it into the suspended state. Each time a process calls suspend_process on another process,
the suspend count is increased. This is recorded in the field rcount. A call to (erlang:resume_process/1) by the
suspending process will decrease the suspend count. A process in the suspend state will not leave the suspend state until the
suspend count reaches zero.

The field rstatus (resume status) is used to keep track of the state the process was in before a suspend. If it was running
or runnable it will start up as runnable, and if it was waiting it will go back to the wait queue. If a suspended waiting process
receives a timeout rstatus is set to runnable so it will resume as runnable.

To keep track of which process to run next the scheduler keeps the processes in a queue.

11.5 Process Queues

The main job of the scheduler is to keep track of work queues, that is, queues of processes and ports.

There are two process states that the scheduler has to handle, runable, and waiting. Processes waiting to receive a message are
in the waiting state. When a waiting process receives a message the send operations triggers a move of the receiving process
into the runable state. If the receive statement have a timeout the scheduler has to trigger the state transition to runable when the
timeout triggers. We will cover this mechanism later in this chapter.

11.5.1 The Ready Queue

Processes in the runable state are placed in a FIFO (first in first out) queue handled by the scheduler, called the ready queue. The
queue is implemented by a first and a last pointer and by the next pointer in the PCB of each participating process. When a new
process is added to the queue the last pointer is followed and the process is added to the end of the queue in an O(1) operation.
When a new process is scheduled it is just popped from the head (the first pointer) of the queue.

The Ready Queue

First: --> P5 +---> P3 +-+-> P17
next: ---+ next: ---+ | next: NULL

|
Last: --------------------------------+

In a SMP system, where you have several scheduler threads, there is one queue per scheduler.

Scheduler 1 Scheduler 2 Scheduler 3 Scheduler 4

Ready: P5 Ready: P1 Ready: P7 Ready: P9
P3 P4 P12
P17 P10

The reality is slightly more complicated since Erlang processes have priorities. Each scheduler actually have three queues. One
queue for max priority tasks, one for high priority tasks and one queue containing both normal and low priority tasks.

Scheduler 1 Scheduler 2 Scheduler 3 Scheduler 4

Max: P5 Max: Max: Max:
High: High: P1 High: High:
Normal: P3 Ready: P4 Ready: P7 Ready: P9

P17 P12
P10

If there are any processes int the max queue the scheduler will pick these processes for execution. If there are no processes in
the max queue but there are processes in the high priority queue the scheduler will pick those processes. Only if there are no
processes in the max and the high priority queues will the scheduler pick the first process from the normal and low queue.
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When a normal processes is inserted into the queue it get a schedule count of 1 and a low prio process get a schedule count of 8.
When a process is picked from the front of the queue its schedule count is reduced by one, if the count reaches zero the process
is scheduled, otherwise it is inserted at the end of the queue. This means that low priority processes will go through the queue
seven times before they are scheduled.

11.5.2 Waiting, Timeouts and the Timing Wheel

A processs trying to do a receive on an empty mailbox or on a mailbox with no matching messages will yield and go into the
waiting state.

When a message is deliverd to an inbox the sending process will check wether the receiver is sleeping in the waiting state, and in
that case it will wake the process, change its state to runable, and put it at the end of the appropriate ready queue.

If the receive statement has a timeout clause a timer will be created for the process which will trigger after the specified
timeout time. The only guarantee the runtime system gives on a timeout is that it will not trigger before the set time, it might be
some time after the intended time before the process is scheduled and get to execute.

Timers are handled in the VM by a timing wheel. That is, an array of time slots which wraps around. The timing wheel is a
global resource and there might be contention for the write lock to the timing wheel if you have many processes inserting timers
into the wheel.

The default size (TIW_SIZE) of the timing wheel is 65536 slots (or 8192 slots if you have built the system for a small memory
footprint). The current time is indicated by an index into the array (tiw_pos). When a timer is inserted into the wheel with a
timeout of T the timer is inserted into the slot at (tiw_pos+T)%TIW_SIZE.

0 1 65535
+-+-+- ... +-+-+-+-+-+-+-+-+-+-+-+ ... +-+-----+
| | | | | | | | | |t| | | | | | | |
+-+-+- ... +-+-+-+-+-+-+-+-+-+-+-+ ... +-+-----+

^ ^ ^
| | |

tiw_pos tiw_pos+T TIW_SIZE

The timer stored in the timing wheel is a pointer to an ErlTimer struct. See [erl_time.h](https://github.com/erlang/otp/blob/-
OTP-19.1/erts/emulator/beam/erl_time.h). If several timers are inserted into the same slot they are linked together in a linked list
by the prev and next fields. The count field is set to T/TIW_SIZE

/*
** Timer entry:

*/
typedef struct erl_timer {

struct erl_timer* next; /* next entry tiw slot or chain */
struct erl_timer* prev; /* prev entry tiw slot or chain */
Uint slot; /* slot in timer wheel */
Uint count; /* number of loops remaining */
int active; /* 1=activated, 0=deactivated */
/* called when timeout */
void (*timeout)(void*);
/* called when cancel (may be NULL) */
void (*cancel)(void*);
void* arg; /* argument to timeout/cancel procs */

} ErlTimer;

11.6 Ports

A port is an Erlang abstraction for a communication point with the world outside of the Erlang VM. Communications with
sockets, pipes, and file IO are all done through ports on the Erlang side.

https://github.com/erlang/otp/blob/OTP-19.1/erts/emulator/beam/erl_time.h
https://github.com/erlang/otp/blob/OTP-19.1/erts/emulator/beam/erl_time.h
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A port, like a process, is created on the same scheduler as the creating process. Also like processes port uses reductions to decide
when to yield, and they also get to run for 2000 reductions. But since ports don’t run Erlang code there are no Erlang function
calls to count as reductions, instead each port task is counted as a number of reductions. Currently a task uses a little more than
200 reductions per task, and a number of reductions relative to one thousands of the size of transmitted data.

A port task is one operation on a port, like opening, closing, sending a number of bytes or receiving data. In order to execute a
port task the executing thread takes a lock on the port.

Port tasks are scheduled and executed in each iteration in the scheduler loop (see below) before a new process is selected for
execution.

11.7 Reductions

When a process is scheduled it will get a number of reductions defined by CONTEXT_REDS (defined in erl_vm.h, currently
as 2000). After using up its reductions or when doing a receive without a matching message in the inbox, the process will be
suspended and a new processes will be scheduled.

If the VM has executed as many reductions as defined by INPUT_REDUCTIONS (currently 2*CONTEXT_REDS, also defined
in erl_vm.h) or if there is no process ready to run the scheduler will do system-level activities. That is, basically, check for
IO; we will cover the details soon.

It is not completely defined what a reduction is, but at least each function call should be counted as a reduction. Things get a
bit more complicated when talking about BIFs and NIFs. A process should not be able to run for "a long time" without using a
reduction and yielding. A function written in C can usually not yield at any time, and the reason for writing it in C is usually to
achieve performance. In such functions a reduction might take longer which can lead to imbalance in the scheduler.

For example in Erlang versions prior to R16 the BIFs binary_to_term/1 and term_to_binary/1 where non yielding
and only counted as one reduction. This meant that a process calling theses functions on large terms could starve other processes.
This can even happen in a smp system because of the way processes are balanced between schedulers, which we will get to soon.

While a process is running the emulator keeps the number of reductions left to execute in the (register mapped) variable FCALLS
(see beam_emu.c).

11.8 The Scheduler Loop

Conceptually you can look at the scheduler as the driver of program execution in the Erlang VM. In reality, that is, the way the
C code is structured, it is the emulator (process_main in beam_emu.c) that drives the execution and it calls the scheduler as
a subroutine to find the next process to execute.

Still, we will pretend that it is the other way around, since it makes a nice conceptual model for the scheduler loop. That is, we
see it as the scheduler picking a process to execute and then handing over the execution to the emulator.

Looking at it that way, the scheduler loop looks like this:

1. Update reduction counters.

2. Check timers

3. If needed check balance

4. If needed migrate processes and ports

5. Do auxiliary scheduler work

6. If needed check IO and update time

7. While needed pick a port task to execute

8. Pick a process to execute
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11.9 Load Balancing

The current strategy of the load balancer is to use as few schedulers as possible without overloading any CPU. The idea is that
you will get better performance through better memory locality when processes share the same CPU.

One thing to note though is that the load balancing done in the scheduler is between scheduler threads and not necessarily between
CPUs or cores. When you start the runtime system you can specify how schedulers should be allocated to cores. The default
behaviour is that it is up to the OS to allocated scheduler threads to cores, but you can also choose to bind schedulers to cores.

The load balancer assumes that there is one schedulers running on each core so that moving a process from a overloaded scheduler
to an under utilized scheduler will give you more parallel processing power. If you have changed how schedulers are allocated
to cores, or if you OS is overloaded or bad at assigning threads to cores, the load balancing might actually work against you.

The load balancer uses two techniques to balance the load, task stealing and migration. Task stealing is used every time a
scheduler runs out of work, this technique will result in the work becoming more spread out between schedulers. Migration is
more complicated and tries to compact the load to the right number of schedulers.

11.9.1 Task Stealing

If a scheduler run queue is empty when it should pick a new process to schedule the scheduler will try to steal work from another
scheduler.

First the scheduler takes a lock on itself to prevent other schedulers to try to steal work from the current scheduler. Then it checks
if there are any inactive schedulers that it can steal a task from. If there are no inactive schedulers with stealable tasks then it will
look at active schedulers, starting with schedulers having a higher id than itself, trying to find a stealable task.

The task stealing will look at one scheduler at a time and try to steal the highest priority task of that scheduler. Since this is done
per scheduler there might actually be higher priority tasks that are stealable on another scheduler which will not be taken.

The task stealing tries to move tasks towards schedulers with lower numbers by trying to steal from schedulers with higher
numbers, but since the stealing also will wrap around and steal from schedulers with lower numbers the result is that processes
are spread out on all active schedulers.

Task stealing is quite fast and can be done on every iteration of the scheduler loop when a scheduler has run out of tasks.

11.9.2 Migration

To really utilize the schedulers optimally a more elaborate migration strategy is used. The current strategy is to compact the load
to as few schedulers as possible, while at the same time spread it out so that no scheduler is overloaded.

This is done by the function check_balance in erl_process.c.

The migration is done by first setting up a migration plan and then letting schedulers execute on that plan until a new plan is set
up. Every 2000*2000 reductions a scheduler calculates a migration path per priority per scheduler by looking at the workload of
all schedulers. The migration path can have three different types of values: 1) cleared 2) migrate to schedueler # 3) immigrate
from scheduler #

When a process becomes ready (for example by reciving a message or triggering a timeout) it will normally be scheduled on the
last scheduler it ran on (S1). That is, if the migration path of that scheduler (S1), at that priority, is cleared. If the migration path
of the scheduler is set to emigrate (to S2) the process will be handed over to that scheduler if both S1 and S2 have unbalanced
run-queues. We will get back to what that means.

When a scheduler (S1) is to pick a new process to execute it checks to see if it has an immigration path from (S2) set. If the two
involved schedulers have unbalanced run-queues S1 will steal a process from S2.

The migration path is calculated by comparing the maximum run-queues for each scheduler for a certain priority. Each scheduler
will update a counter in each iteration of its scheduler loop keeping track of the maximal queue length. This information is then
used to calculate an average (max) queue length (AMQL).
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Any scheduler with a longer run queue than average (S1, S2) will be marked for emigration and any scheduler with a shorter max
run queue than average (S3, S4) will be targeted for immigration.

This is done by looping over the ordered set of schedulers with two indices (immigrate from (fix)) and (emigrate to (tix)). In
each iteration of the a loop the immigration path of S[tix] is set to S[fix] and the emigration path of S[fix] is set to S[tix]. Then
tix is increased and fix decreased till they both pass the balance point. If one index reaches the balance point first it wraps.

In the example: * Iteration 1: S2.emigrate_to = S3 and S3.immigrate_from = S2 * Iteration 2: S1.emigrate_to = S4 and
S4.immigrate_from = S1

Then we are done.

In reality things are a bit more complicated since schedulers can be taken off line. The migration planning is only done for online
schedulers. Also, as mentioned before, this is done per priority level.

When a process is to be inserted into a ready queue and there is a migration path set from S1 to S2 the scheduler first checks that
the run queue of S1 is larger than AMQL and that the run queue of S2 is smaller than the average. This way the migration is only
allowed if both queues are still unbalanced.

There are two exception though where a migration is forced even when the queues are balanced or even imbalanced in the wrong
way. In both these cases a special evacuation flag is set which overrides the balance test.

The evacuation flag is set when a scheduler is taken off line to ensure that no new processes are scheduled on an off line scheduler.
The flag is also set when the scheduler detects that no progress is made on some priority. That is, if there for example is a max
priority process which always is ready to run so that no normal priority processes ever are scheduled. Then the evacuation flag
will be set for the normal priority queue for that scheduler.
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Chapter 12

The Memory Subsystem: Stacks, Heaps and Garbage
Collection

Before we dive into the memory subsystem of ERTS, we need to have some basic vocabulary and understanding of the general
memory layout of a program in a modern operating system. In this review section I will assume the program is compiled to an
ELF executable and running on Linux on something like an IA-32/AMD64 architecture. The layout and terminology is basically
the same for all operating systems that ERTS compile on.

A program’s memory layout looks something like this:

high
addresses

+--------------+
| Arguments |
| ENV |
+--------------+
| Stack | --+
| | | | Can grow
| v | | dynamically
| | --+
+--------------+
| | -------------------------------+
+--------------+ |
| memory | |
| map | -- files or anonymous |
| segment | |
+--------------+ |
| | | Memory
+--------------+ | Mapping
| Thread Stack | --+ | Region
| | | | Statically allocated |
| v | | on thread start. |
| | --+ |
+--------------+ |
| | |
+--------------+ |
| Thread Stack | --+ |
| | | | Statically allocated |
| v | | on thread start. |
| | --+ |
+--------------+ |
| | -------------------------------+
+--------------+ brk
| | --+
| ^ | | Can grow
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| | | | dynamically
| Heap | --+
+--------------+ start_brk
| BSS | -- Static variables initialized to zero
+--------------+
| Data | --+
+--------------+ | Binary (disk image)
| Code | --+
+--------------+

low
addresses

Even though this picture might look daunting it is still a simplification. (For a full understanding of the memory subsystem read
a book like "Understanding the Linux Kernel" or "Linux System Programming") What I want you to take away from this is that
there are two types of dynamically allocatable memory: the heap and memory mapped segments. I will try to call this heap the
C-heap from now on, to distinguish it from an Erlang process heap. I will call a memory mapped segment for just a segment, and
any of the stacks in this picture for the C-stack.

The C-heap is allocated through malloc and a segment is allocated with mmap.

1. A note on pictures of memory

Note When drawing overview pictures of system memory and stacks we will follow the convention that memory addresses
grows upward. That is low memory addresses on the bottom of the page and high memory addresses on the top of the page.
(Stacks most often grow downward starting at high addresses, so that new elements are pushed at the lowest address.)

However when we draw a c-structure we will draw the fields from the top and down, even though the first field of the
structure will be at the lowest address and the following fields at higher addresses. So pictures of structures have low
address at the top of the page and high address at the bottom of the page.

This means that a picture of a c-structure and a picture of a memory area will have their address positions on the page
mirrored. This becomes somewhat confusing when we try to pictures structures and heaps in the same picture.

12.1 The memory subsystem

Now that we dive into the memory subsystem it will once again be apparent that ERTS is more like an operating system than just
a programming language environment. Not only does ERTS provide a garbage collector for Erlang terms on the Erlang process
level, but it also provides a plethora of low level memory allocators and memory allocation strategies.

For an overview of memory allocators see the erts_alloc documentation at: http://www.erlang.org/doc/man/erts_alloc.html

All these allocators also comes with a number of parameters that can be used to tweak their behavior, and this is probably one of
the most important areas from an operational point of view. This is where we can configure the system behavior to fit anything
from a small embedded control system (like a Raspberry Pi) to an Internet scale 2TB database server.

There are currently eleven different allocators, six different allocation strategies, and more than 18 other different settings, some
of which are taking arbitrary numerical values. This means that there basically is an infinite number of possible configurations.
(OK, strictly speaking it is not infinite, since each number is bounded, but there are more configurations than you can shake a
stick at.)

In order to be able to use these settings in any meaningful way we will have to understand how these allocators work and how
each setting impacts the performance of the allocator.

The erts_alloc manual goes as far as to give the following warning:

WARNING

Warning

http://www.erlang.org/doc/man/erts_alloc.html
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Only use these flags if you are absolutely sure what you are doing. Unsuitable settings may cause serious perfor-
mance degradation and even a system crash at any time during operation.

— Ericsson AB http://www.erlang.org/doc/man/erts_alloc.html

Making you absolutely sure that you know what you are doing, that is what this chapter is about.

Oh yes, we will also go into details of how the garbage collector works.

12.2 Different type of memory allocators

The Erlang run-time system is trying its best to handle memory in all situations and under all types of loads, but there are always
corner cases. In this chapter we will look at the details of how memory is allocated and how the different allocators work. With
this knoweledge and some tools that we will look at later you should be able to detect and fix problems if your system ends up in
one of these corner cases.

For a nice story about the troubles the system might get into and how to analyze and correct the behavior read Fred Hébert’s
essay "Troubleshooting Down the Logplex Rabbit Hole".

When we are talking about a memory allocator in this book we have a specific meaning in mind. Each memory allocator manage
allocations and deallocations of memory of a certain type. Each allocator is intended for a specific type of data and is often
specialized for one size of data.

Each memory allocator implements the allocator interface but can used different algorithms and settings for the actual memory
allocation.

The goal with having different allocators is to reduce fragmentation, by grouping allocations of the same size, and to increase
performance, by making frequent allocations cheap.

There are two special, fundamental or generic, memory allocator types sys_alloc and mseg_alloc, and nine specific allocators
implemented through the alloc_util framework.

In the following sections we will go though the different allocators, with a little detour into the general framework for allocators
(alloc_util).

Each allocator has several names used in the documentation and in the C code. See Table 12.1 for a short list of all allocators
and their names. The C-name is used in the C-code to refer to the allocator. The Type-name is used in erl_alloc.types to bind
allocation types to an allocator. The Flag is the letter used for setting parameters of that allocator when starting Erlang.

Name Description C-name Type-name Flag
Basic allocator malloc interface sys_alloc SYSTEM Y
Memory segment
allocator

mmap interface mseg_alloc - M

Temporary allocator Temporary
allocations

temp_alloc TEMPORARY T

Heap allocator Erlang heap data eheap_alloc EHEAP H
Binary allocator Binary data binary_alloc BINARY B
ETS allocator ETS data ets_alloc ETS E
Driver allocator Driver data driver_alloc DRIVER R
Short lived allocator Short lived memory sl_alloc SHORT_LIVED S
Long lived allocator Long lived memory ll_alloc LONG_LIVED L
Fixed allocator Fixed size data fix_alloc FIXED_SIZE F
Standard allocator For most other data std_alloc STANDARD D

Table 12.1: List of memory allocators.

https://blog.heroku.com/archives/2013/11/7/logplex-down-the-rabbit-hole
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12.2.1 The basic allocator: sys_alloc

The allocator sys_alloc can not be disabled, and is basically a straight mapping to the underlying OS malloc implementation in
libc.

If a specific allocator is disabled then sys_alloc is used instead.

All specific allocators uses either sys_alloc or mseg_alloc to allocate memory from the operating system as needed.

When memory is allocated from the OS sys_alloc can add (pad) a fixed number of kilobytes to the requested number. This can
reduce the number system calls by over allocating memory. The default padding is zero.

When memory is freed, sys_alloc will keep some free memory allocated in the process. The size of this free memory is called
the trim threshold, and the default is 128 kilobytes. This also reduces the number of system calls at the cost of a higher memory
footprint. This means that if you are running the system with the default settings you can experience that the Beam process does
not give memory back to the OS directly as memory is freed up.

Memory areas allocated by sys_alloc are stored in the C-heap of the beam process which will grow as needed through system
calls to brk.

12.2.2 The memory segment allocator: mseg_alloc

If the underlying operating system supports mmap a specific memory allocator can use mseg_alloc instead of sys_alloc to allocate
memory from the operating system.

Memory areas allocated through mseg_alloc are called segments. When a segment is freed it is not immediately returned to the
OS, instead it is kept in a segment cache.

When a new segment is allocated a cached segment is reused if possible, i.e. if it is the same size or larger than the requested size
but not too large. The value of absolute max cache bad fit determines the number of kilobytes of extra size which is considered
not too large. The default is 4096 kilobytes.

In order not to reuse a 4096 kilobyte segment for really small allocations there is also a relative_max_cache_bad_fit value which
states that a cached segment may not be used if it is more than that many percent larger. The default value is 20 percent. That is
a 12 KB segment may be used when asked for a 10 KB segment.

The number of entries in the cache defaults to 10 but can be set to any value from zero to thirty.

12.2.3 The memory allocator framework: alloc_util

Building on top of the two generic allocators (sys_alloc and mseg_alloc) is a framework called alloc_util which is used to
implement specific memory allocators for different types of usage and data.

The framework is implemented in erl_alloc_util.[ch] and the different allocators used by ERTS are defined in erl_alloc.types in
the directory "erts/emulator/beam/".

In a smp system there is usually one allocator of each type per scheduler thread.

The smallest unit of memory that an allocator work with is called a block. When you call an allocator to allocate a certain
amount of memory what you get back is a block. It is also blocks that you give as an argument to the allocator when you want to
deallocate memory.

The allocator does not allocate blocks from the operating system directly though. Instead the allocator allocates a carrier from
the operating system, either through sys_alloc or through mseg_alloc, which in turn uses malloc or mmap. If sys_alloc is used
the carrier is placed on the C-heap and if mseg_alloc is used the carrier is placed in a segment.

Small blocks are placed in a multiblock carrier. A multiblock carrier can as the name suggests contain many blocks. Larger
blocks are placed in a singleblock carrier, which as the name implies on contains one block.

What’s considered a small and a large block is determined by the parameter singleblock carrier threshold (sbct), see the list of
system flags below.

Most allocators also have one "main multiblock carrier" which is never deallocated.
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|FREE OS MEMORY |
+---------------+ brk
| FREE HEAP | | less than MYtt kb
+---------------+

/ | Unused PAD | | multiple of Muycs
| |---------------| |
S | | | |

singleblock| | | |
carrier 1 | Block | | | larger than MSsbct kb

| | | | |
\ | | | |

+---------------+
/ |Free in Carrier| |

| |---------------| |
S | | |

main | | |
multiblock | Block 2 | | MSmmbcs kb
carrier |---------------| |

| | | |
\ | Block 1 | |

+---------------+
| |
| U S E D |
| |
+---------------+ start_brk

C-Heap
low
addresses

12.2.3.1 Memory allocation strategies

To find a free block of memory in a multi block carrier an allocation strategy is used. Each type of allocator has a default
allocation strategy, but you can also set the allocation strategy with the as flag.

The Erlang Run-Time System Application Reference Manual lists the following allocation strategies:

Best fit: Find the smallest block that satisfies the requested block size. (bf)

Address order best fit: Find the smallest block that satisfies the requested block size. If multiple blocks are found,
choose the one with the lowest address. (aobf)

Address order first fit: Find the block with the lowest address that satisfies the requested block size. (aoff)

Address order first fit carrier best fit Find the carrier with the lowest address that can satisfy the requested block size,
then find a block within that carrier using the "best fit" strategy. (aoffcbf)

Address order first fit carrier address order best fit: Find the carrier with the lowest address that can satisfy the
requested block size, then find a block within that carrier using the "address order best fit" strategy. aoffcaobf
(address order first fit carrier address order best fit)

Good fit: Try to find the best fit, but settle for the best fit found during a limited search. (gf)

A fit: Do not search for a fit, inspect only one free block to see if it satisfies the request. This strategy is only intended
to be used for temporary allocations. (af)

— erts_alloc

12.2.4 The temporary allocator: temp_alloc

The allocator temp_alloc, is used for temporary allocations. That is very short lived allocations. Memory allocated by temp_alloc
may not be allocated over a Erlang process context switch.

http://www.erlang.org/doc/man/erts_alloc.html
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You can use temp_alloc as a small scratch or working area while doing some work within a function. Look at it as an extension
of the C-stack and free it in the same way. That is, to be on the safe side, free memory allocated by temp_alloc before returning
from the function that did the allocation. There is a note in erl_alloc.types saying that you should free a temp_alloc block before
the emulator starts executing Erlang code.

Note that no Erlang process running on the same scheduler as the allocator may start executing Erlang code before the block is
freed. This means that you can not use a temporary allocation over a bif or nif trap (yield).

In a default R16 smp system there is N+1 temp_alloc allocators where N is the number of schedulers. The temp_alloc uses the
"A fit" (af) strategy. Since the allocation pattern of the temp_alloc basically is that of a stack (mostly of size 0 or 1), this strategy
works fine.

The temporary allocator is, in R16, used by the following types of data: TMP_HEAP, MSG_ROOTS, ROOTSET, LOADER_TEMP,
NC_TMP, TMP, DCTRL_BUF, TMP_DIST_BUF, ESTACK, DB_TMP, DB_MC_STK, DB_MS_CMPL_HEAP, LOGGER_DSBUF,
TMP_DSBUF, DDLL_TMP_BUF, TEMP_TERM, SYS_READ_BUF, ENVIRONMENT, CON_VPRINT_BUF.

For an up to date list of allocation types allocated with each allocator, see erl_alloc.types (e.g. grep TEMPORARY erts/
emulator/beam/erl_alloc.types).

I will not go through each of these different types, but in general as you can guess by their names, they are temporary buffers or
work stacks.

12.2.5 The heap allocator: eheap_alloc

The heap allocator, is used for allocating memory blocks where tagged Erlang terms are stored, such as Erlang process heaps (all
generations), heap fragments, and the beam_registers.

This is probably the memory areas you are most interested in as an Erlang developer or when tuning an Erlang system. We will
talk more about how these areas are managed in the upcoming sections on garbage collection and process memory. There we
will also cover what a heap fragment is.

12.2.6 The binary allocator: binary_alloc

The binary allocator is used for, yes you guessed it, binaries. Binaries can be of quite varying sizes and have varying life spans.
This allocator uses the best fit allocation strategy by default.

12.2.7 The ETS allocator: ets_alloc

The ETS allocator is used for most ets related data, except for some short lived or temporary data used by ets tables-

12.2.8 The driver allocator: driver_alloc

The driver allocator is used for ports, linked in drivers and nifs.

12.2.9 The short lived allocator: sl_alloc

The short lived allocator is used for lists and buffers that are expected to be short lived. Short lived data can live longer than
temporary data.

12.2.10 The long lived allocator: ll_alloc

The long lived allocator is used for long lived data, such as atoms, modules, funs and long lived tables
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12.2.11 The fixed size allocator: fix_alloc

The fixed allocator is used for objects of a fixed size, such as PCBs, message refs and a few other. The fixed size allocator uses
the address order best fit allocation strategy by default.

12.2.12 The standard allocator: std_alloc

The standard allocator is used by the other types of data. (active_procs alloc_info_request arg_reg bif_timer_ll bits_buf bpd
calls_buf db_heir_data db_heir_data db_named_table_entry dcache ddll_handle ddll_processes ddll_processes dist_entry dist_tab
driver_lock ethread_standard fd_entry_buf fun_tab gc_info_request io_queue line_buf link_lh module_refs monitor_lh mon-
itor_lh monitor_sh nlink_lh nlink_lh nlink_sh node_entry node_tab nodes_monitor port_data_heap port_lock port_report_exit
port_specific_data proc_dict process_specific_data ptimer_ll re_heap reg_proc reg_tab sched_wall_time_request stack suspend_monitor
thr_q_element thr_queue zlib )

12.3 TODO: system flags for memory

TODO

12.4 Process Memory

As we saw in Chapter 3 a process i really just a number of memory areas, in this chapter we will look a bit closer at how the
stack, the heap and the mailbox are managed.

The default size of the stack and heap is 233 words. This default size can be changed globally when starting Erlang through the
+ h + flag.You can also set the minimum heap size by when starting a process with +spa
wn_opt by setting min_heap_size.

Erlang terms are tagged as we saw in Chapter 4, and when they are stored on the heap they are either cons cells or boxed objects.

12.4.1 Term sharing

Objects on the heap are passed by references within the context of one process. If you call one function with a tuple as an
argument, then only a tagged reference to that tuple is passed to the called function. When you build new terms you will also
only use references to sub terms.

For example if you have the string "hello" (which is the same as this list of integers: [104,101,108,108,111]) you would get a
stack layout similar to:

ADR BINARY VALUE + DESCRIPTION
hend -> +-------- -------- -------- --------+

| ... |
| ... |
|00000000 00000000 00000000 10000001| 128 + list tag ---------------+

stop ->; | | |
|

htop ->; | | |
132 |00000000 00000000 00000000 01111001| 120 + list tag -------------- | -+
128 |00000000 00000000 00000110 10001111| (H) 104 bsl 4 + small int tag <+ |
124 |00000000 00000000 00000000 01110001| 112 + list tag ----------------- | -+
120 |00000000 00000000 00000110 01011111| (e) 101 bsl 4 + small int tag <---+ |
116 |00000000 00000000 00000000 01110001| 112 + list tag -------------------- | ←↩

-+
112 |00000000 00000000 00000110 11001111| (l) 108 bsl 4 + small int tag <------+ ←↩

|
108 |00000000 00000000 00000000 01110001| 96 + list tag ----------------------- ←↩

| -+
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104 |00000000 00000000 00000110 11001111| (l) 108 bsl 4 + small int tag ←↩
<---------+ |

100 |11111111 11111111 11111111 11111011| NIL ←↩
|

96 |00000000 00000000 00000110 11111111| (o) 111 bsl 4 + small int tag ←↩
<------------+
| ... |

heap -> +-----------------------------------+

If you then create a tuple with two instances of the list, all that is repeated is the tagged pointer to the list: 00000000000000000000000001000001.
The code

L = [104, 101, 108, 108, 111],
T = {L, L}.

would result in a memory layout as seen below. That is, a boxed header saying that this is a tuple of size 2 and then two pointers
to the same list.

ADR VALUE DESCRIPTION
144 00000000000000000000000001000001 128+CONS
140 00000000000000000000000001000001 128+CONS
136 00000000000000000000000010000000 2+ARITYVAL

This is nice, since it is cheap to do and uses very little space. But if you send the tuple to another process or do any other type of
IO, or any operations which results in something called a deep copy, then the data structure is expanded. So if we send out tuple
T to another process P2 (P2 ! T) then the heap of T2 will look like in:

..

You can quickly bring down your Erlang node by expanding a highly shared term, see share.erl.

-module(share).

-export([share/2, size/0]).

share(0, Y) -> {Y,Y};
share(N, Y) -> [share(N-1, [N|Y]) || _ <- Y].

size() ->
T = share:share(5,[a,b,c]),
{{size, erts_debug:size(T)},
{flat_size, erts_debug:flat_size(T)}}.

1> timer:tc(fun() -> share:share(10,[a,b,c]), ok end).
{1131,ok}

2> share:share(10,[a,b,c]), ok.
ok

3> byte_size(list_to_binary(test:share(10,[a,b,c]))), ok.
HUGE size (13695500364)
Abort trap: 6

You can calculate the memory size of a shared term and the size of the expanded size of the term with the functions erts_de
bug:size/1 and erts_debug:flat_size/1.

> share:size().
{{size,19386},{flat_size,94110}}
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For most applications this is not a problem, but you should be aware of the problem, which can come up in many situations. A
deep copy is used for IO, ETS tables, binary_to_term, and message passing.

Let us look in more detail how message passing works.

12.4.2 Message passing

When a process P1 sends a message M to another (local) process P2, the process P1 first calculates the flat size of M. Then it
allocates a new message buffer of that size by doing a heap_alloc of a heap_frag in the local scheduler context.

Given the code in send.erl the state of the system could look like this just before the send in p1/1:

x0 |00000000 00000000 00000000 00100011| Pid 2
x1 |00000000 00000000 00000000 01001010| 136 + boxed tag -----------+

|
|

ADR BINARY VALUE + DESCRIPTION |
hend -> +-------- -------- -------- --------+ |

| ... | |
| ... | |

stop -> | | |
|

htop -> | | |
144 |00000000 00000000 00000000 01000001| 128+CONS ---------------+
140 |00000000 00000000 00000000 01000001| 128+CONS ---------------+
136 |00000000 00000000 00000000 10000000| 2+ARITYVAL <---+ |
132 |00000000 00000000 00000000 01111001| 120+CONS -------------- | -+
128 |00000000 00000000 00000110 10001111| (H) 104 bsl 4 + small int tag <+ |
124 |00000000 00000000 00000000 01110001| 112+CONS ----------------- | -+
120 |00000000 00000000 00000110 01011111| (e) 101 bsl 4 + small int tag <---+ |
116 |00000000 00000000 00000000 01110001| 112+CONS -------------------- | ←↩

-+
112 |00000000 00000000 00000110 11001111| (l) 108 bsl 4 + small int tag <------+ ←↩

|
108 |00000000 00000000 00000000 01110001| 96+CONS ----------------------- ←↩

| -+
104 |00000000 00000000 00000110 11001111| (l) 108 bsl 4 + small int tag ←↩

<---------+ |
100 |11111111 11111111 11111111 11111011| NIL ←↩

|
96 |00000000 00000000 00000110 11111111| (o) 111 bsl 4 + small int tag ←↩

<------------+
| ... |

heap -> +-----------------------------------+

P2

When P1 start sending the message M to P2. It (through the code in erl_message.c) first calculates the flat size of M (which in
our example is 23 words)1. Then (in a SMP system) if it can take a lock on P2 and there is enough room on the heap of P2 it will
copy the message to the heap of P2.

If P2 is running (or exiting) or there isn’t enough space on the heap, then a new heap fragment is allocated (of sizeof ErlHeapFrag-
ment - sizeof(Eterm) + 23*sizeof(Eterm)) 2 which after initialization will look like:

erl_heap_fragment:
ErlHeapFragment* next; NULL
ErlOffHeap off_heap:

erl_off_heap_header* first; NULL

1 We ignore tracing here which will add a trace token to the size of the message, and always use a heap fragment.
2 The -sizeof(Eterm) comes from mem in ErlHeapFragment already having the size of 1 Eterm
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Uint64 overhead; 0
unsigned alloc_size; 23
unsigned used_size; 23
Eterm mem[1]; ?

... 22 free words

Then the message is copied into the heap fragment:

erl_heap_fragment:
ErlHeapFragment* next; NULL
ErlOffHeap off_heap:

erl_off_heap_header* first; Boxed tag+&amp;mem+2*WS-+
Uint64 overhead; 0 |

unsigned alloc_size; 23 |
unsigned used_size; 23 |
Eterm mem: 2+ARITYVAL <------+

&amp;mem+3*WS+1 ---+
&amp;mem+13*WS+1 ------+
(H*16)+15 <--+ |
&amp;mem+5*WS+1 --+ |
(e*16)+15 <-+ |
&amp;mem+7*WS+1 ----| |
(l*16)+15 <---+ |
&amp;mem+9*WS+1 ---+ |
(l*16)+15 <--+ |
&amp;mem+11*WS+1 ----+ |
(o*16)+15 <---+ |
NIL |
(H*16)+15 <-----+
&amp;mem+15*WS+1 --+
(e*16)+15 <-+
&amp;mem+17*WS+1 ----|
(l*16)+15 <---+
&amp;mem+19*WS+1 ---+
(l*16)+15 <--+
&amp;mem+21*WS+1 ----+
(o*16)+15 <---+
NIL</pre>

In either case a a new mbox (ErlMessage) is allocated, a lock (ERTS_PROC_LOCK_MSGQ) is taken on the receiver and the
message on the heap or the in the new heap fragment is linked into the mbox.

erl_mesg {
struct erl_mesg* next = NULL;
data: ErlHeapFragment *heap_frag = bp;
Eterm m[0] = message;

} ErlMessage;

Then the mbox is linked into the in message queue (msg_inq) of the receiver, and the lock is released. Note that msg_inq.
last points to the next field of the last message in the queue. When a new mbox is linked in this next pointer is updated to
point to the new mbox, and the last pointer is updated to point to the next field of the new mbox.

12.4.3 Binaries

As we saw in Chapter 4 there are four types of binaries internally. Three of these types, heap binaries, sub binaries and match
contexts are stored on the local heap and handled by the garbage collector and message passing as any other object, copied as
needed.
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12.4.3.1 Reference Counting

The fourth type. large binaries or refc binaries on the other hand are partially stored outside of the process heap and they are
reference counted.

The payload of a refc binary is stored in memory allocated by the binary allocator. There is also a small reference to the payload
call a ProcBin which is stored on the process heap. This reference is copied by message passing and by the GC, but the payload
is untouched. This makes it relatively cheap to send large binaries to other processes since the whole binary doesn’t need to be
copied.

All references through a ProcBin to a refc binary increases the reference count of the binary by one. All ProcBin objects on a
process heap are linked together in a linked list. After a GC pass this linked list is traversed and the reference count of the binary
is decreased with one for each ProcBin that has deceased. If the reference count of the refc binary reaches zero that binary is
deallocated.

Having large binaries reference counted and not copied by send or garbage collection is a big win, but there is one problem
with having a mixed environment of garbage collection and reference counting. In a pure reference counted implementation the
reference count would be reduce as soon as a reference to the object dies, and when the reference count reaches zero the object
is freed. In the ERTS mixed environment a reference to a reference counted object does not die until a garbage collection detects
that the reference is dead.

This means that binaries, which has a tendency to be large or even huge, can hang around for a long time after all references to
the binary are dead. Note that since binaries are allocated globally, all references from all processes need to be dead, that is all
processes that has seen a binary need to do a GC.

Unfortunately it is not always easy, as a developer, to see which processes have seen a binary in the GC sense of the word seen.
Imagine for example that you have a load balancer that receives work items and dispatches them to workers.

In this code there is an example of a loop which doesn’t need to do GC. (See listing lb for a full example.)

loop(Workers, N) ->
receive
WorkItem ->

Worker = lists:nth(N+1, Workers),
Worker ! WorkItem,
loop(Workers, (N+1) rem length(Workers))

end.

This server will just keep on grabbing references to binaries and never free them, eventually using up all system memory.

When one is aware of the problem it is easy to fix, one can either do a garbage_collect on each iteration of loop or one could do
it every five seconds or so by adding an after clause to the receive. (after 5000→ garbage_collect(), loop(Workers, N) ).

12.4.3.2 Sub Binaries and Matching

When you match out a part of a binary you get a sub binary. This sub binary will be a small structure just containing pointers
into the real binary. This increases the reference count for the binary but uses very little extra space.

If a match would create a new copy of the matched part of the binary it would cost both space and time. So in most cases just
doing a pattern match on a binary and getting a sub binary to work on is just what you want.

There are some degenerate cases, imagine for example that you load huge file like a book into memory and then you match out a
small part like a chapter to work on. The problem is then that the whole of the rest of the book is still kept in memory until you
are done with processing the chapter. If you do this for many books, perhaps you want to get the introduction of every book in
your file system, then you will keep the whole of each book in memory and not just the introductory chapter. This might lead to
huge memory usage.

The solution in this case, when you know you only want one small part of a large binary and you want to have the small part
hanging around for some time, is to use binary:copy/1. This function is only used for its side effect, which is to actually
copy the sub binary out of the real binary removing the reference to the larger binary and therefore hopefully letting it be garbage
collected.

There is a pretty thorough explanation of how binary construction and matching is done in the Erlang documentation: http://www.erlang.org/-
doc/efficiency_guide/binaryhandling.html.

http://www.erlang.org/doc/efficiency_guide/binaryhandling.html
http://www.erlang.org/doc/efficiency_guide/binaryhandling.html
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12.4.4 Garbage Collection

When a process runs out of space on the stack and heap the process will try to reclaim space by doing a minor garbage collection.
The code for this can be found in erl_gc.c.

ERTS uses a generational copying garbage collector. A copying collector means that during garbage collection all live young
terms are copied from the old heap to a new heap. Then the old heap is discarded. A generational collector works on the
principle that most terms die young, they are temporary terms created, used, and thrown away. Older terms are promoted to the
old generation which is collected more seldom, with the rational that once a term has become old it will probably live for a long
time.

Conceptually a garbage collection cycle works as follows:

• First you collect all roots (e.g. the stack).

• Then for each root, if the root points to a heap allocated object which doesn’t have a forwarding pointer you copy the object to
the new heap. For each copied object update the original with a forwarding pointer to the new copy.

• Now go through the new heap and do the same as for the roots.

We will go through an example to see how this is done in detail. We will go through a minor collection without an old generation,
and we will only use the stack as the root set. In reality the process dictionary, trace data and probe data among other things are
also included in the rootset.

Let us look at how the call to garbage_collect in the gc_example behaves. The code will generate a string which is shared by two
elements of a cons and a tuple, the tuple will the be eliminated resulting in garbage. After the GC there should only be one string
on the heap. That is, first we generate the term {["Hello","Hello"], "Hello"} (sharing the same string "Hello" in all
instances. Then we just keep the term ["Hello","Hello"] when triggering a gc.

Note
We will take the opportunity to go through how you, on a linux system, can used gdb to examine the behavior of ERTS. You
can of course use the debugger of your choice. If you already know how to use gdb or if you have no interest in going into the
debugger you can just ignore the meta text about how to inspect the system and just look at the diagrams and the explanations
of how the GC works.

-module(gc_example).
-export([example/0]).

example() ->
T = gen_data(),
S = element(1, T),
erlang:garbage_collect(),
S.

gen_data() ->
S = gen_string($H, $e, $l, $l, $o),
T = gen_tuple([S,S],S),
T.

gen_string(A,B,C,D,E) ->
[A,B,C,D,E].

gen_tuple(A,B) ->
{A,B}.

After compiling the example I start an erlang shell, test the call and prepare for a new call to the example (without hitting return):

1> gc_example:example().
["Hello","Hello"]
2> spawn(gc_example,example,[]).

https://github.com/erlang/otp/blob/maint/erts/emulator/beam/erl_gc.c
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Then I use gdb to attach to my erlang node (os PID: 2955 in this case)

$ gdb /home/happi/otp/lib/erlang/erts-6.0/bin/beam.smp 2955

Note
Depending on your settings for ptrace_scope you might have to precede the gdb invocation with sudo.

Then in gdb I set a breakpoint at the start of the main GC function and let the node continue:

(gdb) break garbage_collect_0
(gdb) cont
Continuing.

Now I hit enter in the Erlang shell and execution stops at the breakpoint:

Breakpoint 1, garbage_collect_0 (A__p=0x7f673d085f88, BIF__ARGS=0x7f673da90340) at beam/bif ←↩
.c:3771

3771 FLAGS(BIF_P) |= F_NEED_FULLSWEEP;

Now we can inspect the PCB of the process:

(gdb) p *(Process *) A__p
$1 = {common = {id = 1408749273747, refc = {counter = 1}, tracer_proc = ←↩

18446744073709551611, trace_flags = 0, u = {alive = {
started_interval = 0, reg = 0x0, links = 0x0, monitors = 0x0, ptimer = 0x0}, ←↩

release = {later = 0, func = 0x0, data = 0x0,
next = 0x0}}}, htop = 0x7f6737145950, stop = 0x7f6737146000, heap = 0x7f67371458c8, ←↩

hend = 0x7f6737146010, heap_sz = 233,
min_heap_size = 233, min_vheap_size = 46422, fp_exception = 0, hipe = {nsp = 0x0, nstack ←↩

= 0x0, nstend = 0x0, ncallee = 0x7f673d080000,
closure = 0, nstgraylim = 0x0, nstblacklim = 0x0, ngra = 0x0, ncsp = 0x7f673d0863e8, ←↩

narity = 0, float_result = 0}, arity = 0,
arg_reg = 0x7f673d086080, max_arg_reg = 6, def_arg_reg = {393227, 457419, ←↩

18446744073709551611, 233, 46422, 2000}, cp = 0x7f673686ac40,
i = 0x7f673be17748, catches = 0, fcalls = 1994, rcount = 0, schedule_count = 0, reds = 0, ←↩

group_leader = 893353197987, flags = 0,
fvalue = 18446744073709551611, freason = 0, ftrace = 18446744073709551611, next = 0 ←↩

x7f673d084cc0, nodes_monitors = 0x0,
suspend_monitors = 0x0, msg = {first = 0x0, last = 0x7f673d086120, save = 0x7f673d086120, ←↩

len = 0, mark = 0x0, saved_last = 0x7d0}, u = {
bif_timers = 0x0, terminate = 0x0}, dictionary = 0x0, seq_trace_clock = 0, ←↩

seq_trace_lastcnt = 0,
seq_trace_token = 18446744073709551611, initial = {393227, 457419, 0}, current = 0 ←↩

x7f673be17730, parent = 1133871366675,
approx_started = 1407857804, high_water = 0x7f67371458c8, old_hend = 0x0, old_htop = 0x0, ←↩

old_heap = 0x0, gen_gcs = 0,
max_gen_gcs = 65535, off_heap = {first = 0x0, overhead = 0}, mbuf = 0x0, mbuf_sz = 0, psd ←↩

= 0x0, bin_vheap_sz = 46422,
bin_vheap_mature = 0, bin_old_vheap_sz = 46422, bin_old_vheap = 0, sys_task_qs = 0x0, ←↩

state = {counter = 41002}, msg_inq = {first = 0x0,
last = 0x7f673d086228, len = 0}, pending_exit = {reason = 0, bp = 0x0}, lock = {flags = ←↩

{counter = 1}, queue = {0x0, 0x0, 0x0, 0x0},
refc = {counter = 1}}, scheduler_data = 0x7f673bd6c080, suspendee = ←↩

18446744073709551611, pending_suspenders = 0x0, run_queue = {
counter = 140081362118912}, hipe_smp = {have_receive_locks = 0}}

Wow, that was a lot of information. The interesting part is about the stack and the heap:
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hend = 0x7f6737146010,
stop = 0x7f6737146000,
htop = 0x7f6737145950,
heap = 0x7f67371458c8,

By using some helper scripts we can inspect the stack and the heap in a meaningful way. (see Appendix .14 for the definitions of
the scripts in gdb_script.)

(gdb) source gdb_scripts
(gdb) print_p_stack A__p
0x00007f6737146008 [0x00007f6737145929] cons -> 0x00007f6737145928
(gdb) print_p_heap A__p
0x00007f6737145948 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145940 [0x00007f6737145929] cons -> 0x00007f6737145928
0x00007f6737145938 [0x0000000000000080] Tuple size 2
0x00007f6737145930 [0x00007f6737145919] cons -> 0x00007f6737145918
0x00007f6737145928 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145920 [0xfffffffffffffffb] NIL
0x00007f6737145918 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145910 [0x00007f67371458f9] cons -> 0x00007f67371458f8
0x00007f6737145908 [0x000000000000048f] 72
0x00007f6737145900 [0x00007f67371458e9] cons -> 0x00007f67371458e8
0x00007f67371458f8 [0x000000000000065f] 101
0x00007f67371458f0 [0x00007f67371458d9] cons -> 0x00007f67371458d8
0x00007f67371458e8 [0x00000000000006cf] 108
0x00007f67371458e0 [0x00007f67371458c9] cons -> 0x00007f67371458c8
0x00007f67371458d8 [0x00000000000006cf] 108
0x00007f67371458d0 [0xfffffffffffffffb] NIL
0x00007f67371458c8 [0x00000000000006ff] 111

Here we can see the heap of the process after it has allocated the list "Hello" on the heap and the cons containing that list twice,
and the tuple containing the cons and the list. The root set, in this case the stack, contains a pointer to the cons containing two
copies of the list. The tuple is dead, that is, there are no references to it.

The garbage collection starts by calculating the root set and by allocating a new heap (to space). By stepping into the gc code
in the debugger you can see how this is done. I will not go through the details here. After a number of steps the execution will
reach the point where all terms in the root set are copied to the new heap. This starts around (depending on version) line 1272
with a while loop in erl_gc.c.

In our case the root is a cons pointing to address 0x00007f95666597f0 containing the letter (integer) H. When a cons cell is
moved from the current heap, called from space, to to space the value in the head (or car) is overwritten with a moved cons tag
(the value 0).

After the first step where the root set is moved, the from space and the to space looks like this:

from space:

(gdb) print_p_heap p
0x00007f6737145948 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145940 [0x00007f6737145929] cons -> 0x00007f6737145928
0x00007f6737145938 [0x0000000000000080] Tuple size 2
0x00007f6737145930 [0x00007f67371445b1] cons -> 0x00007f67371445b0
0x00007f6737145928 [0x0000000000000000] Tuple size 0
0x00007f6737145920 [0xfffffffffffffffb] NIL
0x00007f6737145918 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145910 [0x00007f67371458f9] cons -> 0x00007f67371458f8
0x00007f6737145908 [0x000000000000048f] 72
0x00007f6737145900 [0x00007f67371458e9] cons -> 0x00007f67371458e8
0x00007f67371458f8 [0x000000000000065f] 101
0x00007f67371458f0 [0x00007f67371458d9] cons -> 0x00007f67371458d8
0x00007f67371458e8 [0x00000000000006cf] 108
0x00007f67371458e0 [0x00007f67371458c9] cons -> 0x00007f67371458c8
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0x00007f67371458d8 [0x00000000000006cf] 108
0x00007f67371458d0 [0xfffffffffffffffb] NIL
0x00007f67371458c8 [0x00000000000006ff] 111

to space:

(gdb) print_heap n_htop-1 n_htop-2
0x00007f67371445b8 [0x00007f6737145919] cons -> 0x00007f6737145918
0x00007f67371445b0 [0x00007f6737145909] cons -> 0x00007f6737145908

In from space the head of the first cons cell has been overwritten with 0 (looks like a tuple of size 0) and the tail has been
overwritten with a forwarding pointer pointing to the new cons cell in the to space. In to space we now have the first cons cell
with two backward pointers to the head and the tail of the cons in the from space.

When the collector is done with the root set the to space contains backward pointers to all still live terms. At this point the
collector starts sweeping the to space. It uses two pointers n_hp pointing to the bottom of the unseen heap and n_htop
pointing to the top of the heap.

n_htop:
0x00007f67371445b8 [0x00007f6737145919] cons -> 0x00007f6737145918

n_hp 0x00007f67371445b0 [0x00007f6737145909] cons -> 0x00007f6737145908

The GC will then look at the value pointed to by n_hp, in this case a cons pointing back to the from space. So it moves that
cons to the to space, incrementing n_htop to make room for the new cons, and incrementing n_hp to indicate that the first cons
is seen.

from space:

0x00007f6737145948 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145940 [0x00007f6737145929] cons -> 0x00007f6737145928
0x00007f6737145938 [0x0000000000000080] Tuple size 2
0x00007f6737145930 [0x00007f67371445b1] cons -> 0x00007f67371445b0
0x00007f6737145928 [0x0000000000000000] Tuple size 0
0x00007f6737145920 [0xfffffffffffffffb] NIL
0x00007f6737145918 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145910 [0x00007f67371445c1] cons -> 0x00007f67371445c0
0x00007f6737145908 [0x0000000000000000] Tuple size 0
0x00007f6737145900 [0x00007f67371458e9] cons -> 0x00007f67371458e8
0x00007f67371458f8 [0x000000000000065f] 101
0x00007f67371458f0 [0x00007f67371458d9] cons -> 0x00007f67371458d8
0x00007f67371458e8 [0x00000000000006cf] 108
0x00007f67371458e0 [0x00007f67371458c9] cons -> 0x00007f67371458c8
0x00007f67371458d8 [0x00000000000006cf] 108
0x00007f67371458d0 [0xfffffffffffffffb] NIL
0x00007f67371458c8 [0x00000000000006ff] 111

to space:

n_htop:
0x00007f67371445c8 [0x00007f67371458f9] cons -> 0x00007f67371458f8
0x00007f67371445c0 [0x000000000000048f] 72

n_hp 0x00007f67371445b8 [0x00007f6737145919] cons -> 0x00007f6737145918
SEEN 0x00007f67371445b0 [0x00007f67371445c1] cons -> 0x00007f67371445c0

The same thing then happens with the second cons.

from space:

0x00007f6737145948 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145940 [0x00007f6737145929] cons -> 0x00007f6737145928
0x00007f6737145938 [0x0000000000000080] Tuple size 2
0x00007f6737145930 [0x00007f67371445b1] cons -> 0x00007f67371445b0
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0x00007f6737145928 [0x0000000000000000] Tuple size 0
0x00007f6737145920 [0x00007f67371445d1] cons -> 0x00007f67371445d0
0x00007f6737145918 [0x0000000000000000] Tuple size 0
0x00007f6737145910 [0x00007f67371445c1] cons -> 0x00007f67371445c0
0x00007f6737145908 [0x0000000000000000] Tuple size 0
0x00007f6737145900 [0x00007f67371458e9] cons -> 0x00007f67371458e8
0x00007f67371458f8 [0x000000000000065f] 101
0x00007f67371458f0 [0x00007f67371458d9] cons -> 0x00007f67371458d8
0x00007f67371458e8 [0x00000000000006cf] 108
0x00007f67371458e0 [0x00007f67371458c9] cons -> 0x00007f67371458c8
0x00007f67371458d8 [0x00000000000006cf] 108
0x00007f67371458d0 [0xfffffffffffffffb] NIL
0x00007f67371458c8 [0x00000000000006ff] 111

to space:

n_htop:
0x00007f67371445d8 [0xfffffffffffffffb] NIL
0x00007f67371445d0 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f67371445c8 [0x00007f67371458f9] cons -> 0x00007f67371458f8

n_hp 0x00007f67371445c0 [0x000000000000048f] 72
SEEN 0x00007f67371445b8 [0x00007f6737145919] cons -> 0x00007f67371445d0
SEEN 0x00007f67371445b0 [0x00007f67371445c1] cons -> 0x00007f67371445c0

The next element in to space is the immediate 72, which is only stepped over (with n_hp++). Then there is another cons which
is moved.

The same thing then happens with the second cons.

from space:

0x00007f6737145948 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145940 [0x00007f6737145929] cons -> 0x00007f6737145928
0x00007f6737145938 [0x0000000000000080] Tuple size 2
0x00007f6737145930 [0x00007f67371445b1] cons -> 0x00007f67371445b0
0x00007f6737145928 [0x0000000000000000] Tuple size 0
0x00007f6737145920 [0x00007f67371445d1] cons -> 0x00007f67371445d0
0x00007f6737145918 [0x0000000000000000] Tuple size 0
0x00007f6737145910 [0x00007f67371445c1] cons -> 0x00007f67371445c0
0x00007f6737145908 [0x0000000000000000] Tuple size 0
0x00007f6737145900 [0x00007f67371445e1] cons -> 0x00007f67371445e0
0x00007f67371458f8 [0x0000000000000000] Tuple size 0
0x00007f67371458f0 [0x00007f67371458d9] cons -> 0x00007f67371458d8
0x00007f67371458e8 [0x00000000000006cf] 108
0x00007f67371458e0 [0x00007f67371458c9] cons -> 0x00007f67371458c8
0x00007f67371458d8 [0x00000000000006cf] 108
0x00007f67371458d0 [0xfffffffffffffffb] NIL
0x00007f67371458c8 [0x00000000000006ff] 111

to space:

n_htop:
0x00007f67371445e8 [0x00007f67371458e9] cons -> 0x00007f67371458e8
0x00007f67371445e0 [0x000000000000065f] 101
0x00007f67371445d8 [0xfffffffffffffffb] NIL

n_hp 0x00007f67371445d0 [0x00007f6737145909] cons -> 0x00007f6737145908
SEEN 0x00007f67371445c8 [0x00007f67371458f9] cons -> 0x00007f67371445e0
SEEN 0x00007f67371445c0 [0x000000000000048f] 72
SEEN 0x00007f67371445b8 [0x00007f6737145919] cons -> 0x00007f67371445d0
SEEN 0x00007f67371445b0 [0x00007f67371445c1] cons -> 0x00007f67371445c0

Now we come to a cons that points to a cell that has already been moved. The GC sees the IS_MOVED_CONS tag at
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0x00007f6737145908 and copies the destination of the moved cell from the tail (*n_hp+ = ptr[1];+). This way sharing is
preserved during GC. This step does not affect from space, but the backward pointer in to space is rewritten.

to space:

n_htop:
0x00007f67371445e8 [0x00007f67371458e9] cons -> 0x00007f67371458e8
0x00007f67371445e0 [0x000000000000065f] 101

n_hp 0x00007f67371445d8 [0xfffffffffffffffb] NIL
SEEN 0x00007f67371445d0 [0x00007f67371445c1] cons -> 0x00007f67371445c0
SEEN 0x00007f67371445c8 [0x00007f67371458f9] cons -> 0x00007f67371445e0
SEEN 0x00007f67371445c0 [0x000000000000048f] 72
SEEN 0x00007f67371445b8 [0x00007f6737145919] cons -> 0x00007f67371445d0
SEEN 0x00007f67371445b0 [0x00007f67371445c1] cons -> 0x00007f67371445c0

Then the rest of the list (the string) is moved.

from space:

0x00007f6737145948 [0x00007f6737145909] cons -> 0x00007f6737145908
0x00007f6737145940 [0x00007f6737145929] cons -> 0x00007f6737145928
0x00007f6737145938 [0x0000000000000080] Tuple size 2
0x00007f6737145930 [0x00007f67371445b1] cons -> 0x00007f67371445b0
0x00007f6737145928 [0x0000000000000000] Tuple size 0
0x00007f6737145920 [0x00007f67371445d1] cons -> 0x00007f67371445d0
0x00007f6737145918 [0x0000000000000000] Tuple size 0
0x00007f6737145910 [0x00007f67371445c1] cons -> 0x00007f67371445c0
0x00007f6737145908 [0x0000000000000000] Tuple size 0
0x00007f6737145900 [0x00007f67371445e1] cons -> 0x00007f67371445e0
0x00007f67371458f8 [0x0000000000000000] Tuple size 0
0x00007f67371458f0 [0x00007f67371445f1] cons -> 0x00007f67371445f0
0x00007f67371458e8 [0x0000000000000000] Tuple size 0
0x00007f67371458e0 [0x00007f6737144601] cons -> 0x00007f6737144600
0x00007f67371458d8 [0x0000000000000000] Tuple size 0
0x00007f67371458d0 [0x00007f6737144611] cons -> 0x00007f6737144610
0x00007f67371458c8 [0x0000000000000000] Tuple size 0

to space:

n_htop:
n_hp
SEEN 0x00007f6737144618 [0xfffffffffffffffb] NIL
SEEN 0x00007f6737144610 [0x00000000000006ff] 111
SEEN 0x00007f6737144608 [0x00007f6737144611] cons -> 0x00007f6737144610
SEEN 0x00007f6737144600 [0x00000000000006cf] 108
SEEN 0x00007f67371445f8 [0x00007f6737144601] cons -> 0x00007f6737144600
SEEN 0x00007f67371445f0 [0x00000000000006cf] 108
SEEN 0x00007f67371445e8 [0x00007f67371445f1] cons -> 0x00007f67371445f0
SEEN 0x00007f67371445e0 [0x000000000000065f] 101
SEEN 0x00007f67371445d8 [0xfffffffffffffffb] NIL
SEEN 0x00007f67371445d0 [0x00007f67371445c1] cons -> 0x00007f67371445c0
SEEN 0x00007f67371445c8 [0x00007f67371445e1] cons -> 0x00007f67371445e0
SEEN 0x00007f67371445c0 [0x000000000000048f] 72
SEEN 0x00007f67371445b8 [0x00007f67371445d1] cons -> 0x00007f67371445d0
SEEN 0x00007f67371445b0 [0x00007f67371445c1] cons -> 0x00007f67371445c0

There are some things to note from this example. When terms are created in Erlang they are created bottom up, starting with the
elements. The garbage collector works top down, starting with the top level structure and then copying the elements. This means
that the direction of the pointers change after the first GC. This has no real implications but it is good to know when looking at
actual heaps. You can not assume that structures should be bottom up.

Also note that the GC does a breath first traversal. This means that locality for one term most often is worse after a GC. With
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the size of modern cashes this should not be a problem. You could of course create a pathological example where it becomes a
problem, but you can also create a pathological example where a depth first approach would cause problems.

The third thing to note is that sharing is preserved which is really important otherwise we might end up using more space after a
GC than before.

Generations. . .

hend -> +----+
|....|

stop -> | |
| | +----+ old_hend
| | | |

htop -> | | | |
|....| | | old_htop
|....| |....|

heap -> +----+ +----+ old_heap
The Heap Old Heap

+high_water, old_hend, old_htop, old_heap,
gen_gcs, max_gen_gcs, off_heap, mbuf, mbuf_sz, psd, bin_vheap_sz,
bin_vheap_mature, bin_old_vheap_sz, bin_old_vheap+.

12.5 Other interesting memory areas

12.5.1 The atom table.

TODO ==== Code TODO ==== Constants TODO
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Chapter 13

Advanced data structures (ETS, DETS, Mnesia)
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Chapter 14

IO, Ports and Networking (10p)

Within Erlang all communication is done by asynchronous signaling. The communication between an Erlang node and the
outside world is done through a port. A port is an interface between Erlang processes and an external resource. In early versions
of Erlang a port behaved very much in the same way as a process and you comunicated by sending and receiving signals. You
can still communicate with ports this way but there are also a number of BIFs to communicate directly with a port.

In this chapter we will look at how ports are used as a common interface for all IO, how ports comunicate with the outside world
and how Erlang processes comunicate with ports. But first we will look at how standard IO works on a higher level.

14.1 Standard IO

• IO protocol

• group leader

• erlang:display — a biff that sends directly to node’s std out

• io:format — sends through io protocol and the group leader

• Redirecting standard IO at startup (detached mode)

• Standard in and out

14.2 Ports

A port is the process like interface between Erlang processes and everything that is not Erlang processes. The programmer can
to a large extent pretend that everything in the world behaves like an Erlang process and communicate through message passing.

Each port has an owner, more on this later, but all processes who knows about the port can send messages to the port. In figure
REF we see how a processes can communicate with the port and how the port is communicating to the world outside the Erlang
node.

+-------------------+
| __ |
| / \ owner __ _______
| \__/ < - -- -> / \ <----> / /
| P1 \__/ /______/
| 7 |Port1 file
| / |
| / |
| __ / |
| / \ |
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| \__/ |
| P2 |
+-------------------+

Erlang Node

Process P1 has opened a port (Port1) to a file, and is the owner of
the port and can receive messages from the port. Process P2 also has a
handle to the port and can send messages to the port. The processes
and the port resides in an Erlang node. The file lives in the file and
operating system on the outside of the Erlang node.

If the port owner dies or is terminated the port is also killed. When a port terminates all external resources should also be cleaned
up. This is true for all ports that comes with Erlang and if you implement your own port you should make sure it does this
cleanup.

14.2.1 Different types of Ports

There are three different classes of ports: file descriptors, external programs and drivers. A file descriptor port makes it possible
for a process to access an already opened file descriptor. A port to an external program invokes the external program as a separate
OS process. A driver port requires a driver to be loaded in the Erlang node.

All ports are created by a call to erlang:open_port(PortName, PortSettings).

A file descriptor port is opened with {fd, In, Out} as the PortName. This class of ports is used by some internal ERTS
servers like the old shell. They are considered to not be very efficient and hence seldom used.

An external program port can be used to execute any program in the native OS of the Erlang node. To open an external program
port you give either the argument {spawn, Command} or {spawn_executable, FileName} with the name of the
external program. This is the easiest and one of the safest way to interact with code written in other programming languages.
Since the external program is executed in its own OS process it will not bring down the Erlang node if it crashes. (It can of course
use up all CPU or memory or do a number of other things to bring down the whole OS, but it is much safer than a linked in driver
or a NIF.)

A driver port requires that a driver program has been loaded with ERTS. Such a port is started with either {spawn, Command}
or {spawn_driver, Command}. Writing your own linked in driver can be an efficient way to interface for example some
C library code that you would like to use. Note that a linked in driver executes in the same OS process as the Erlang node and a
crash in the driver will bring down the whole node. Details about how to write an Erlang driver in general can be found in [?].

Erlang OTP comes with a number port drivers implementing the predefined port types. There are the common drivers available on
all platforms: tcp_inet, udp_inet, sctp_inet, efile, zlib_drv, ram_file_drv, binary_filer, tty_sl. These drivers are used to implement
e.g. file handling and sockets in Erlang. On Windows there is also a driver to access the registry: registrydrv. And on most
platforms there are example drivers to use when implementing your own driver like: multi and sig_drv.

+-----------------------------------------------------------------------------------------------------+ ←↩

| Entities on an Erlang Node ←↩
|

|--------------------------------------------------+--------------------------------------------------| ←↩

| Processes | Ports ←↩
|

|--------------------------------------------------+---------++------++-------------------------------| ←↩

| | FD || OS || Drivers ←↩
|

|--------------------------------------------------+---------++------++----------+++-------+++--------| ←↩

| | (Heart) || (ls) || tcp_inet ||| efile ←↩
||| ... |

+--------------------------------------------------+---------++------++----------+++-------+++--------+ ←↩
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14.2.1.1 Ports to file descriptors

Creating

Commands

Examples

Implementation

14.2.1.2 Ports to Spawned OS Processes

Creating

Commands

Implementation

Windows

14.2.1.3 Ports to Linked in Drivers

Creating

Commands

Implementation

See chapter [?] for details of how to implement your own linked in driver.

14.3 Distributed Erlang

14.4 Sockets, UDP and TCP
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Chapter 15

Distribution



The Erlang Runtime System 104 / 137

Chapter 16

Interfacing C — BIFs NIFs and Linked in Drivers
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Chapter 17

Native code
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Part II

Running ERTS
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Chapter 18

Operation and Maintenance
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Part III

Apendicies



The Erlang Runtime System 109 / 137

.1 Building Erlang OTP

.1 BEAM Instructions

Here we will go through most of the instructions in the BEAM generic instruction set in detail. In the next section we list all
instructions with a brief explanation generated from the documentaion in the code (see lib/compiler/src/genop.tab).

.2 Functions and Labels

.2.1 label Lbl

Instruction number 1 in the generic instruction set is not really an instruction at all. It is just a module local label giving a name,
or actually a number to the current position in the code.

Each label potentially marks the beginning of a basic block since it is a potential destination of a jump.

.2.2 func_info Module Function Arity

The code for each function starts with a func_info instruction. This instruction is used for generating a function clause error, and
the execution of the code in the function actually starts at the label following the func_info instruction.

Imagine a function with a guard:

id(I) when is_integer(I) -> I.

The Beam code for this function might look like:

{function, id, 1, 4}.
{label,3}.
{func_info,{atom,test1},{atom,id},1}.

{label,4}.
{test,is_integer,{f,3},[{x,0}]}.
return.

Here the meta information {function, id, 1, 4} tells us that execution of the id/1 function will start at label 4. At label
4 we do an is_integer on x0 and if we fail we jump to label 3 (f3) which points to the func_info instruction, which will
generate a function clause exception. Otherwise we just fall through and return the argument (x0).

.3 Test instructions

.3.1 Type tests

The type test instructions (is_\* Lbl Argument) checks whether the argument is of the given type and if not jumps to the
label Lbl. The beam disassembler wraps all these instructions in a test instruction. E.g.:

{test,is_integer,{f,3},[{x,0}]}.

The current type test instructions are is_integer, is_float, is_number, is_atom, is_pid, is_reference, is_port, is_nil, is_binary,
is_list, is_nonempty_list, is_function, is_function2, is_boolean, is_bitstr, and is_tuple.

And then there is also one type test instruction of Arity 3: test_arity Lbl Arg Arity. This instruction tests that the
arity of the argument (assumed to be a tuple) is of Arity. This instruction is usually preceded by an is_tuple instruction.
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.3.2 Comparisons

The comparison instructions (is_\* Lbl Arg1 Arg2) compares the two arguments according to the instructions and jumps
to Lbl if the comparison fails.

The comparison instructions are: : is_lt, is_ge, is_eq, is_ne, is_eq_exact, and is_ne_exact.

Remember that all Erlang terms are ordered so these instructions can compare any two terms. You can for example test if the
atom self is less than the pid returned by self(). (It is.)

Note that for numbers the comparison is done on the Erlang type number, see Chapter 4. That is, for a mixed float and integer
comparison the number of lower precision is converted to the other type before comparison. For example on my system 1 and
0.1 compares as equal, as well as 9999999999999999 and 1.0e16. Comparing floating point numbers is always risk and best
avoided, the result may wary depending on the underlying hardware.

If you want to make sure that the integer 1 and the floating point number 1.0 are compared different you can use is_eq_exact and
is_ne_exact. This corresponds to the Erlang operators =:= and =/=.

.4 Function Calls

In this chapter we will summarize what the different call instructions does. For a thorough description of how function calls work
see Chapter 8.

.4.1 call Arity Label

Does a call to the function of arity Arity in the same module at label Label. First count down the reductions and if needed do
a context switch.

For all local calls the label is the second label of the function where the code starts. It is assumed that the preceding instruction
at that label is func_info in order to get the MFA if a context switch is needed.

.4.2 call_last Arity Label

Do a tail recursive call the function of arity Arity in the same module at label Label. First count down the reductions and if
needed do a context switch.

.4.3 call_only Arity Label Deallocate

Deallocate Deallocate words of stack, then do a tail recursive call to the function of arity Arity in the same module at label
Label First count down the reductions and if needed do a context switch.

.4.4 call_ext Arity Destination

Does an external call to the function of arity Arity given by Destination. Destination is usually of the form {extfunc,
Module, Function, Arity}. First count down the reductions and if needed do a context switch.

.4.5 call_ext_only Arity Destination

Does a tail recursive external call to the function of arity Arity given by Destination. Destination is usually of the form
{extfunc, Module, Function, Arity}. First count down the reductions and if needed do a context switch.
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.4.6 call_ext_last Arity Destination Deallocate

Deallocate Deallocate words of stack, then do a tail recursive external call to the function of arity Arity given by Destina-
tion. Destination is usually of the form {extfunc, Module, Function, Arity}. First count down the reductions and
if needed do a context switch.

.4.7 bif0 Bif Reg, bif1 Lbl Bif Arg Reg, bif2 Lbl Bif Arg1 Arg2 Reg

Call the bif Bif with the given arguments, and store the result in Reg. If the bif fails jump to Lbl. No zero arity bif can fail an
thus those calls doesn’t take a fail label.

.4.8 gc_bif1-3 Lbl Live Bif Arg1-3 Reg

Call the bif Bif with the given arguments, and store the result in Reg. If the bif fails jump to Lbl. Store the arguments in x(Live),
x(Live+1) and x(live+2).

.4.9 call_fun Arity

The instruction call_fun assumes that the arguments are placed in the argument registers and that the fun (the pointer to the
closure) is placed in the last argument register.

That is, for a zero arity call, the closure is in x0. For a arity 1 call x0 contains the argument and x1 contains the closure.

.4.10 apply/1

TODO

.4.11 apply_last/2

TODO

.5 Stack (and Heap) Management

The stack and the heap of an Erlang process on Beam share the same memory area see Chapter 3 and Chapter 12 for a full
discussion. The stack grows toward lower addresses and the heap toward higher addresses. Beam will do a garbage collection if
more space than what is available is needed on either the stack or the heap.

A leaf function A leaf function is a function which doesn’t call any other function.

A non leaf function A non leaf function is a function which may call another function.

These instructions are also used by non leaf functions for setting up and tearing down the stack frame for the current instruction.
That is, on entry to the function the continuation pointer (CP) is saved on the stack, and on exit it is read back from the stack.

A function skeleton for a leaf function looks like this:

{function, Name, Arity, StartLabel}.
{label,L1}.
{func_info,{atom,Module},{atom,Name},Arity}.

{label,L2}.
...
return.
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A function skeleton for a non leaf function looks like this:

{function, Name, Arity, StartLabel}.
{label,L1}.
{func_info,{atom,Module},{atom,Name},Arity}.

{label,L2}.
{allocate,Need,Live}.

...
call ...
...

{deallocate,Need}.
return.

.5.1 allocate StackNeed Live

Save the continuation pointer (CP) and allocate space for StackNeed extra words on the stack. If a GC is needed during
allocation save Live number of X registers. E.g. if Live is 2 then registers X0 and X1 are saved.

When allocating on the stack, the stack pointer (E) is decreased.

Example .1 Allocate 1 0

Before After
| xxx | | xxx |

E -> | xxx | | xxx |
| | | ??? | caller save slot

... E -> | CP |

... ...
HTOP -> | | HTOP -> | |

| xxx | | xxx |

.5.2 allocate_heap StackNeed HeapNeed Live

Save the continuation pointer (CP) and allocate space for StackNeed extra words on the stack. Ensure that there also is space
for HeapNeed words on the heap. If a GC is needed during allocation save Live number of X registers.

Note that the heap pointer (HTOP) is not changed until the actual heap allocation takes place.

.5.3 allocate_zero StackNeed Live

This instruction works the same way as allocate, but it also clears out the allocated stack slots with NIL.

Example .2 allocate_zero 1 0

Before After
| xxx | | xxx |

E -> | xxx | | xxx |
| | | NIL | caller save slot

... E -> | CP |

... ...
HTOP -> | | HTOP -> | |

| xxx | | xxx |
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.5.4 allocate_heap_zero StackNeed HeapNeed Live

The allocate_heap_zero instruction works as the allocate_heap instruction, but it also clears out the allocated stack slots with
NIL.

.5.5 test_heap HeapNeed Live

The test_heap instruction ensures there is space for HeapNeed words on the heap. If a GC is needed save Live number of X
registers.

.5.6 init N

The init instruction clears N stack words. By writing NIL to them.

.5.7 deallocate N

The deallocate instruction is the opposite of the allocate instruction, it restores the continuation pointer and deallocates N+1 stack
words.

.5.8 return

The return instructions jumps to the address in the continuation pointer (CP).

.5.9 trim N Remaining

Removes N words of stack usage, while keeping the continuation pointer on the top of the stack. (The argument Remaining is to
the best of my knowledge unused.)

Trim 2
Before After

| ??? | | ??? |
| xxx | E -> | CP |
| xxx | | ... |

E -> | CP | | ... |
| | | ... |

... ...
HTOP -> | | HTOP -> | |

| xxx | | xxx |

.6 Moving, extracting, modifying.

.6.1 move Source Destination

Move the source Source (a litteral or a register) to the destination register Destination.

.6.2 get_list Source Head Tail

Get the head and tail (or car and cdr) parts of a list (a cons cell) from Source and put them into the registers Head and Tail.
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.6.3 get_tuple_element Source Element Destination

Get element number Element from the tuple in Source and put it in the destination register Destination.

.6.4 set_tuple_element NewElement Tuple Position

Update the element at postition Position of the tuple Tuple with the new element NewElement.

.7 Building terms.

.7.1 put_list/3

TODO ==== put_tuple/2 TODO ==== put/1

.7.2 make_fun2/1

TODO

.8 Binary Syntax

.8.1 bs_put_integer/5

TODO ==== bs_put_binary/5 TODO ==== bs_put_float/5 TODO ==== bs_put_string/2 TODO ==== bs_init2/6 TODO ====
bs_add/5 TODO ==== bs_start_match2/5 TODO ==== bs_get_integer2/7 TODO ==== bs_get_float2/7 TODO ==== bs_get_binary2/7
TODO ==== bs_skip_bits2/5 TODO ==== bs_test_tail2/3 TODO ==== bs_save2/2 TODO ==== bs_restore2/2 TODO ====
bs_context_to_binary/1 TODO ==== bs_test_unit/3 TODO ==== bs_match_string/4 TODO ==== bs_init_writable/0 TODO
==== bs_append/8 TODO ==== bs_private_append/6 TODO ==== bs_init_bits/6 TODO ==== bs_get_utf8/5 TODO ====
bs_skip_utf8/4 TODO ==== bs_get_utf16/5 TODO ==== bs_skip_utf16/4 TODO ==== bs_get_utf32/5 TODO ==== bs_skip_utf32/4
TODO ==== bs_utf8_size/3 TODO ==== bs_put_utf8/3 TODO ==== bs_utf16_size/3 TODO ==== bs_put_utf16/3 TODO
==== bs_put_utf32/3 TODO

.9 Floating Point Arithmetic

.9.1 fclearerror/0

TODO ==== fcheckerror/1 TODO ==== fmove/2 TODO ==== fconv/2 TODO ==== fadd/4 TODO ==== fsub/4 TODO ====
fmul/4 TODO ==== fdiv/4 TODO ==== fnegate/3 TODO

.10 Pattern Matching

.10.1 select_val

TODO ==== select_arity_val TODO ==== jump TODO === Exception handling ==== catch/2 TODO ==== catch_end/1 TODO
==== badmatch/1 TODO ==== if_end/0 TODO ==== case_end/1 TODO
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.11 Meta instructions

.11.1 on_load

TODO ==== line TODO

.12 Generic Instructions

Name Arity Op Code Spec Documentation
allocate 2 12 allocate StackNeed,

Live
Allocate space for
StackNeed words on
the stack. If a GC is
needed during
allocation there are
Live number of live
X registers. Also save
the continuation
pointer (CP) on the
stack.

allocate_heap 3 13 allocate_heap
StackNeed,
HeapNeed, Live

Allocate space for
StackNeed words on
the stack and ensure
there is space for
HeapNeed words on
the heap. If a GC is
needed save Live
number of X
registers. Also save
the continuation
pointer (CP) on the
stack.

allocate_heap_zero 3 15 allocate_heap_zero
StackNeed,
HeapNeed, Live

Allocate space for
StackNeed words on
the stack and
HeapNeed words on
the heap. If a GC is
needed during
allocation there are
Live number of live
X registers. Clear the
new stack words. (By
writing NIL.) Also
save the continuation
pointer (CP) on the
stack.
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Name Arity Op Code Spec Documentation
allocate_zero 2 14 allocate_zero

StackNeed, Live
Allocate space for
StackNeed words on
the stack. If a GC is
needed during
allocation there are
Live number of live
X registers. Clear the
new stack words. (By
writing NIL.) Also
save the continuation
pointer (CP) on the
stack.

apply 1 112
apply_last 2 113
badmatch 1 72
bif0 2 9 bif0 Bif, Reg Call the bif Bif and

store the result in
Reg.

bif1 4 10 bif1 Lbl, Bif, Arg,
Reg

Call the bif Bif with
the argument Arg,
and store the result in
Reg. On failure jump
to Lbl.

bif2 5 11 bif2 Lbl, Bif, Arg1,
Arg2, Reg

Call the bif Bif with
the arguments Arg1
and Arg2, and store
the result in Reg. On
failure jump to Lbl.

bs_add 5 111
bs_append 8 134
bs_bits_to_bytes 3 (110) DEPRECATED
bs_bits_to_bytes2 2 (127) DEPRECATED
bs_context_to_binary 1 130
bs_final 2 (88) DEPRECATED
bs_final2 2 (126) DEPRECATED
bs_get_binary 5 (82) DEPRECATED
bs_get_binary2 7 119
bs_get_float 5 (81) DEPRECATED
bs_get_float2 7 118
bs_get_integer 5 (80) DEPRECATED
bs_get_integer2 7 117
bs_get_utf16 5 140
bs_get_utf32 5 142
bs_get_utf8 5 138
bs_init 2 (87) DEPRECATED
bs_init2 6 109
bs_init_bits 6 137
bs_init_writable 0 133
bs_match_string 4 132
bs_need_buf 1 (93) DEPRECATED
bs_private_append 6 135
bs_put_binary 5 90
bs_put_float 5 91
bs_put_integer 5 89
bs_put_string 2 92
bs_put_utf16 3 147
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bs_put_utf32 3 148
bs_put_utf8 3 145
bs_restore 1 (86) DEPRECATED
bs_restore2 2 123
bs_save 1 (85) DEPRECATED
bs_save2 2 122
bs_skip_bits 4 (83) DEPRECATED
bs_skip_bits2 5 120
bs_skip_utf16 4 141
bs_skip_utf32 4 143
bs_skip_utf8 4 139
bs_start_match 2 (79) DEPRECATED
bs_start_match2 5 116
bs_test_tail 2 (84) DEPRECATED
bs_test_tail2 3 121
bs_test_unit 3 131
bs_utf16_size 3 146
bs_utf8_size 3 144
call 2 4 call Arity, Label Call the function at

Label. Save the next
instruction as the
return address in the
CP register.

call_ext 2 7 call_ext Arity,
Destination

Call the function of
arity Arity pointed to
by Destination. Save
the next instruction as
the return address in
the CP register.

call_ext_last 3 8 call_ext_last Arity,
Destination,
Deallocate

Deallocate and do a
tail call to function of
arity Arity pointed to
by Destination. Do
not update the CP
register. Deallocate
Deallocate words
from the stack before
the call.

call_ext_only 2 78 call_ext_only Arity,
Label

Do a tail recursive
call to the function at
Label. Do not update
the CP register.

call_fun 1 75 call_fun Arity Call a fun of arity
Arity. Assume
arguments in registers
x(0) to x(Arity-1) and
that the fun is in
x(Arity). Save the
next instruction as the
return address in the
CP register.
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call_last 3 5 call_last Arity, Label,

Dellocate
Deallocate and do a
tail recursive call to
the function at Label.
Do not update the CP
register. Before the
call deallocate
Deallocate words of
stack.

call_only 2 6 call_only Arity,
Label

Do a tail recursive
call to the function at
Label. Do not update
the CP register.

case_end 1 74
catch 2 62
catch_end 1 63
deallocate 1 18 deallocate N Restore the

continuation pointer
(CP) from the stack
and deallocate N+1
words from the stack
(the + 1 is for the
CP).

fadd 4 98
fcheckerror 1 95
fclearerror 0 94
fconv 2 97
fdiv 4 101
fmove 2 96
fmul 4 100
fnegate 3 102
fsub 4 99
func_info 3 2 func_info M, F, A Define a function

M:F/A
gc_bif1 5 124 gc_bif1 Lbl, Live,

Bif, Arg, Reg
Call the bif Bif with
the argument Arg,
and store the result in
Reg. On failure jump
to Lbl. Do a garbage
collection if
necessary to allocate
space on the heap for
the result (saving
Live number of X
registers).

gc_bif2 6 125 gc_bif2 Lbl, Live,
Bif, Arg1, Arg2, Reg

Call the bif Bif with
the arguments Arg1
and Arg2, and store
the result in Reg. On
failure jump to Lbl.
Do a garbage
collection if
necessary to allocate
space on the heap for
the result (saving
Live number of X
registers).
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gc_bif3 7 152 gc_bif3 Lbl, Live,

Bif, Arg1, Arg2, Arg3,
Reg

Call the bif Bif with
the arguments Arg1,
Arg2 and Arg3, and
store the result in
Reg. On failure jump
to Lbl. Do a garbage
collection if
necessary to allocate
space on the heap for
the result (saving
Live number of X
registers).

get_list 3 65 get_list Source,
Head, Tail

Get the head and tail
(or car and cdr) parts
of a list (a cons cell)
from Source and put
them into the
registers Head and
Tail.

get_map_elements 3 158
get_tuple_element 3 66 get_tuple_element

Source, Element,
Destination

Get element number
Element from the
tuple in Source and
put it in the
destination register
Destination.

has_map_fields 3 157
if_end 0 73
init 1 17 init N Clear the Nth stack

word. (By writing
NIL.)

int_band 4 (33) DEPRECATED
int_bnot 3 (38) DEPRECATED
int_bor 4 (34) DEPRECATED
int_bsl 4 (36) DEPRECATED
int_bsr 4 (37) DEPRECATED
int_bxor 4 (35) DEPRECATED
int_code_end 0 3
int_div 4 (31) DEPRECATED
int_rem 4 (32) DEPRECATED
is_atom 2 48 is_atom Lbl, Arg1 Test the type of Arg1

and jump to Lbl if it
is not an atom.

is_binary 2 53 is_binary Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not a binary.

is_bitstr 2 129 is_bitstr Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not a bit string.

is_boolean 2 114 is_boolean Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not a Boolean.

is_constant 2 (54) DEPRECATED
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is_eq 3 41 is_eq Lbl, Arg1, Arg2 Compare two terms

and jump to Lbl if
Arg1 is not
(numerically) equal
to Arg2.

is_eq_exact 3 43 is_eq_exact Lbl,
Arg1, Arg2

Compare two terms
and jump to Lbl if
Arg1 is not exactly
equal to Arg2.

is_float 2 46 is_float Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not a float.

is_function 2 77 is_function Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not a function (i.e.
fun or closure).

is_function2 3 115 is_function2 Lbl,
Arg1, Arity

Test the type of Arg1
and jump to Lbl if it
is not a function of
arity Arity.

is_ge 3 40 is_ge Lbl, Arg1, Arg2 Compare two terms
and jump to Lbl if
Arg1 is less than
Arg2.

is_integer 2 45 is_integer Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not an integer.

is_list 2 55 is_list Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not a cons or nil.

is_lt 3 39 is_lt Lbl, Arg1, Arg2 Compare two terms
and jump to Lbl if
Arg1 is not less than
Arg2.

is_map 2 156
is_ne 3 42 is_ne Lbl, Arg1, Arg2 Compare two terms

and jump to Lbl if
Arg1 is (numerically)
equal to Arg2.

is_ne_exact 3 44 is_ne_exact Lbl,
Arg1, Arg2

Compare two terms
and jump to Lbl if
Arg1 is exactly equal
to Arg2.

is_nil 2 52 is_nil Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not nil.

is_nonempty_list 2 56 is_nonempty_list
Lbl, Arg1

Test the type of Arg1
and jump to Lbl if it
is not a cons.

is_number 2 47 is_number Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not a number.

is_pid 2 49 is_pid Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not a pid.
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is_port 2 51 is_port Lbl, Arg1 Test the type of Arg1

and jump to Lbl if it
is not a port.

is_reference 2 50 is_reference Lbl,
Arg1

Test the type of Arg1
and jump to Lbl if it
is not a reference.

is_tuple 2 57 is_tuple Lbl, Arg1 Test the type of Arg1
and jump to Lbl if it
is not a tuple.

jump 1 61 jump Label Jump to Label.
label 1 1 label Lbl Specify a module

local label. Label
gives this code
address a name (Lbl)
and marks the start of
a basic block.

line 1 153
loop_rec 2 23 loop_rec Label,

Source
Loop over the
message queue, if it is
empty jump to Label.

loop_rec_end 1 24 loop_rec_end Label Advance the save
pointer to the next
message and jump
back to Label.

m_div 4 (30) DEPRECATED
m_minus 4 (28) DEPRECATED
m_plus 4 (27) DEPRECATED
m_times 4 (29) DEPRECATED
make_fun 3 (76) DEPRECATED
make_fun2 1 103
move 2 64 move Source,

Destination
Move the source
Source (a literal or a
register) to the
destination register
Destination.

on_load 0 149
put 1 71
put_list 3 69
put_literal 2 (128) DEPRECATED
put_map_assoc 5 154
put_map_exact 5 155
put_string 3 (68) DEPRECATED
put_tuple 2 70
raise 2 108
recv_mark 1 150 recv_mark Label Save the end of the

message queue and
the address of the
label Label so that a
recv_set instruction
can start scanning the
inbox from this
position.
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recv_set 1 151 recv_set Label Check that the saved

mark points to Label
and set the save
pointer in the
message queue to the
last position of the
message queue saved
by the recv_mark
instruction.

remove_message 0 21 remove_message Unlink the current
message from the
message queue and
store a pointer to the
message in x(0).
Remove any timeout.

return 0 19 return Return to the address
in the continuation
pointer (CP).

select_tuple_arity 3 60 select_tuple_arity
Tuple, FailLabel,
Destinations

Check the arity of the
tuple Tuple and jump
to the corresponding
destination label, if
no arity matches,
jump to FailLabel.

select_val 3 59 select_val Arg,
FailLabel,
Destinations

Jump to the
destination label
corresponding to Arg
in the Destinations
list, if no arity
matches, jump to
FailLabel.

send 0 20 send Send argument in
x(0) as a message to
the destination
process in x(0). The
message in x(1) ends
up as the result of the
send in x(0).

set_tuple_element 3 67 set_tuple_element
NewElement, Tuple,
Position

Update the element at
postition Position of
the tuple Tuple with
the new element
NewElement.

test_arity 3 58 test_arity Lbl, Arg1,
Arity

Test the arity of (the
tuple in) Arg1 and
jump to Lbl if it is not
equal to Arity.

test_heap 2 16 test_heap HeapNeed,
Live

Ensure there is space
for HeapNeed words
on the heap. If a GC
is needed save Live
number of X
registers.

timeout 0 22 timeout Reset the save point
of the mailbox and
clear the timeout flag.
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trim 2 136 trim N, Remaining Reduce the stack

usage by N words,
keeping the CP on the
top of the stack.

try 2 104
try_case 1 106
try_case_end 1 107
try_end 1 105
wait 1 25 wait Label Suspend the

processes and set the
entry point to the
beginning of the
receive loop at Label.

wait_timeout 2 26 wait_timeout Lable,
Time

Sets up a timeout of
Time milllisecons
and saves the address
of the following
instruction as the
entry point if the
timeout triggers.

.13 Specific Instructions

Argument types

Type Explanation
t A term, e.g. [{foo,bar}]
I An integer e.g. 42
x A register, e.g. 5
y A stack slot, e.g. 1
c A constant (atom,nil,small int) // Pid?
a An atom, e.g. foo
f A label, i.e. a code address
s Either a literal, a register or a stack slot
d Either a register or a stack slot
r A register R0
P A positive (unsigned) integer literal
j An optional code label
e A reference to an export table entry
l A floating-point register

List of all BEAM Instructions

Instruction Arguments Explanation
allocate t t
allocate_heap t I t
deallocate I
init y
init2 y y
init3 y y y
i_trim I
test_heap I t
allocate_zero t t
allocate_heap_zero t I t
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Instruction Arguments Explanation
i_select_val r f I
i_select_val x f I
i_select_val y f I
i_select_val2 r f c f c f
i_select_val2 x f c f c f
i_select_val2 y f c f c f
i_jump_on_val rxy f I I
i_jump_on_val_zero rxy f I
i_select_tuple_arity r f I
i_select_tuple_arity x f I
i_select_tuple_arity y f I
i_select_tuple_arity2 r f A f A f
i_select_tuple_arity2 x f A f A f
i_select_tuple_arity2 y f A f A f
i_func_info I a a I
return
get_list rxy rxy rxy
catch y f
catch_end y
try_end y
try_case_end s
set_tuple_element s d P
i_get_tuple_element rxy P rxy
is_number f rxy
jump f
case_end rxy
badmatch rxy
if_end
raise s s
badarg j
system_limit j
move_jump f ncxy
move_x1 c
move_x2 c
move2 x y x y
move2 y x y x
move2 x x x x
move rxync rxy
recv_mark f
i_recv_set f
remove_message
timeout
timeout_locked
i_loop_rec f r
loop_rec_end f
wait f
wait_locked f
wait_unlocked f
i_wait_timeout f I
i_wait_timeout f s
i_wait_timeout_locked f I
i_wait_timeout_locked f s
i_wait_error
i_wait_error_locked
send
i_is_eq_exact_immed f rxy c
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i_is_ne_exact_immed f rxy c
i_is_eq_exact_literal f rxy c
i_is_ne_exact_literal f rxy c
i_is_eq_exact f
i_is_ne_exact f
i_is_lt f
i_is_ge f
i_is_eq f
i_is_ne f
i_put_tuple rxy I
put_list s s d
i_fetch s s
move_return xcn r
move_deallocate_return xycn r Q
deallocate_return Q
test_heap_1_put_list I y
is_tuple_of_arity f rxy A
is_tuple f rxy
test_arity f rxy A
extract_next_element xy
extract_next_element2 xy
extract_next_element3 xy
is_integer_allocate f rx I I
is_integer f rxy
is_list f rxy
is_nonempty_list_allocate f rx I t
is_nonempty_list_test_heap f r I t
is_nonempty_list f rxy
is_atom f rxy
is_float f rxy
is_nil f rxy
is_bitstring f rxy
is_reference f rxy
is_pid f rxy
is_port f rxy
is_boolean f rxy
is_function2 f s s
allocate_init t I y
i_apply
i_apply_last P
i_apply_only
apply I
apply_last I P
i_apply_fun
i_apply_fun_last P
i_apply_fun_only
i_hibernate
call_bif0 e
call_bif1 e
call_bif2 e
call_bif3 e
i_get s d
self rxy
node rxy
i_fast_element rxy j I d
i_element rxy j s d
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bif1 f b s d
bif1_body b s d
i_bif2 f b d
i_bif2_body b d
i_move_call c r f
i_move_call_last f P c r
i_move_call_only f c r
move_call xy r f
move_call_last xy r f Q
move_call_only x r f
i_call f
i_call_last f P
i_call_only f
i_call_ext e
i_call_ext_last e P
i_call_ext_only e
i_move_call_ext c r e
i_move_call_ext_last e P c r
i_move_call_ext_only e c r
i_call_fun I
i_call_fun_last I P
i_make_fun I t
is_function f rxy
i_bs_start_match2 rxy f I I d
i_bs_save2 rx I
i_bs_restore2 rx I
i_bs_match_string rx f I I
i_bs_get_integer_small_imm rx I f I d
i_bs_get_integer_imm rx I I f I d
i_bs_get_integer f I I d
i_bs_get_integer_8 rx f d
i_bs_get_integer_16 rx f d
i_bs_get_integer_32 rx f I d
i_bs_get_binary_imm2 f rx I I I d
i_bs_get_binary2 f rx I s I d
i_bs_get_binary_all2 f rx I I d
i_bs_get_binary_all_reuse rx f I
i_bs_get_float2 f rx I s I d
i_bs_skip_bits2_imm2 f rx I
i_bs_skip_bits2 f rx rxy I
i_bs_skip_bits_all2 f rx I
bs_test_zero_tail2 f rx
bs_test_tail_imm2 f rx I
bs_test_unit f rx I
bs_test_unit8 f rx
bs_context_to_binary rxy
i_bs_get_utf8 rx f d
i_bs_get_utf16 rx f I d
i_bs_validate_unicode_retract j
i_bs_init_fail rxy j I d
i_bs_init_fail_heap I j I d
i_bs_init I I d
i_bs_init_heap I I I d
i_bs_init_heap_bin I I d
i_bs_init_heap_bin_heap I I I d
i_bs_init_bits_fail rxy j I d
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i_bs_init_bits_fail_heap I j I d
i_bs_init_bits I I d
i_bs_init_bits_heap I I I d
i_bs_add j I d
i_bs_init_writable
i_bs_append j I I I d
i_bs_private_append j I d
i_new_bs_put_integer j s I s
i_new_bs_put_integer_imm j I I s
i_bs_utf8_size s d
i_bs_utf16_size s d
i_bs_put_utf8 j s
i_bs_put_utf16 j I s
i_bs_validate_unicode j s
i_new_bs_put_float j s I s
i_new_bs_put_float_imm j I I s
i_new_bs_put_binary j s I s
i_new_bs_put_binary_imm j I s
i_new_bs_put_binary_all j s I
bs_put_string I I
fmove qdl ld
fconv d l
i_fadd l l l
i_fsub l l l
i_fmul l l l
i_fdiv l l l
i_fnegate l l l
i_fcheckerror
fclearerror
i_increment rxy I I d
i_plus j I d
i_minus j I d
i_times j I d
i_m_div j I d
i_int_div j I d
i_rem j I d
i_bsl j I d
i_bsr j I d
i_band j I d
i_bor j I d
i_bxor j I d
i_int_bnot j s I d
i_gc_bif1 j I s I d
i_gc_bif2 j I I d
i_gc_bif3 j I s I d
int_code_end
label L
line I

.14 Full Code Listings

-module(beamfile).
-export([read/1]).
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read(Filename) ->
{ok, File} = file:read_file(Filename),
<<"FOR1",

Size:32/integer,
"BEAM",
Chunks/binary>> = File,

{Size, parse_chunks(read_chunks(Chunks, []),[])}.

read_chunks(<<N,A,M,E, Size:32/integer, Tail/binary>>, Acc) ->
%% Align each chunk on even 4 bytes
ChunkLength = align_by_four(Size),
<<Chunk:ChunkLength/binary, Rest/binary>> = Tail,
read_chunks(Rest, [{[N,A,M,E], Size, Chunk}|Acc]);

read_chunks(<<>>, Acc) -> lists:reverse(Acc).

align_by_four(N) -> (4 * ((N+3) div 4)).

parse_chunks([{"Atom", _Size, <<_Numberofatoms:32/integer, Atoms/binary>>} | Rest], Acc) ->
parse_chunks(Rest,[{atoms,parse_atoms(Atoms)}|Acc]);

parse_chunks([{"ExpT", _Size,
<<_Numberofentries:32/integer, Exports/binary>>}

| Rest], Acc) ->
parse_chunks(Rest,[{exports,parse_table(Exports)}|Acc]);

parse_chunks([{"ImpT", _Size,
<<_Numberofentries:32/integer, Imports/binary>>}

| Rest], Acc) ->
parse_chunks(Rest,[{imports,parse_table(Imports)}|Acc]);

parse_chunks([{"Code", Size, <<SubSize:32/integer, Chunk/binary>>} | Rest], Acc) ->
<<Info:SubSize/binary, Code/binary>> = Chunk,
OpcodeSize = Size - SubSize - 8, %% 8 is size of CunkSize & SubSize
<<OpCodes:OpcodeSize/binary, _Align/binary>> = Code,
parse_chunks(Rest,[{code,parse_code_info(Info), OpCodes}|Acc]);

parse_chunks([{"StrT", _Size, <<Strings/binary>>} | Rest], Acc) ->
parse_chunks(Rest,[{strings,binary_to_list(Strings)}|Acc]);

parse_chunks([{"Attr", Size, Chunk} | Rest], Acc) ->
<<Bin:Size/binary, _Pad/binary>> = Chunk,
Attribs = binary_to_term(Bin),
parse_chunks(Rest,[{attributes,Attribs}|Acc]);

parse_chunks([{"CInf", Size, Chunk} | Rest], Acc) ->
<<Bin:Size/binary, _Pad/binary>> = Chunk,
CInfo = binary_to_term(Bin),
parse_chunks(Rest,[{compile_info,CInfo}|Acc]);

parse_chunks([{"LocT", _Size,
<<_Numberofentries:32/integer, Locals/binary>>}

| Rest], Acc) ->
parse_chunks(Rest,[{locals,parse_table(Locals)}|Acc]);

parse_chunks([{"LitT", _ChunkSize,
<<_CompressedTableSize:32, Compressed/binary>>}

| Rest], Acc) ->
<<_NumLiterals:32,Table/binary>> = zlib:uncompress(Compressed),
Literals = parse_literals(Table),
parse_chunks(Rest,[{literals,Literals}|Acc]);

parse_chunks([{"Abst", _ChunkSize, <<>>} | Rest], Acc) ->
parse_chunks(Rest,Acc);

parse_chunks([{"Abst", _ChunkSize, <<AbstractCode/binary>>} | Rest], Acc) ->
parse_chunks(Rest,[{abstract_code,binary_to_term(AbstractCode)}|Acc]);

parse_chunks([{"Line", _ChunkSize, <<LineTable/binary>>} | Rest], Acc) ->
<<Ver:32,Bits:32,NumLineInstrs:32,NumLines:32,NumFnames:32,

Lines:NumLines/binary,Fnames/binary>> = LineTable,
parse_chunks(Rest,[{line,

[{version,Ver},
{bits,Bits},
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{num_line_instrunctions,NumLineInstrs},
{lines,decode_lineinfo(binary_to_list(Lines),0)},
{function_names,Fnames}]}|Acc]);

parse_chunks([Chunk|Rest], Acc) -> %% Not yet implemented chunk
parse_chunks(Rest, [Chunk|Acc]);

parse_chunks([],Acc) -> Acc.

parse_atoms(<<Atomlength, Atom:Atomlength/binary, Rest/binary>>) when Atomlength > 0->
[list_to_atom(binary_to_list(Atom)) | parse_atoms(Rest)];

parse_atoms(_Alignment) -> [].

parse_table(<<Function:32/integer,
Arity:32/integer,
Label:32/integer,
Rest/binary>>) ->

[{Function, Arity, Label} | parse_table(Rest)];
parse_table(<<>>) -> [].

parse_code_info(<<Instructionset:32/integer,
OpcodeMax:32/integer,
NumberOfLabels:32/integer,
NumberOfFunctions:32/integer,
Rest/binary>>) ->

[{instructionset, Instructionset},
{opcodemax, OpcodeMax},
{numberoflabels, NumberOfLabels},
{numberofFunctions, NumberOfFunctions} |
case Rest of

<<>> -> [];
_ -> [{newinfo, Rest}]

end].

parse_literals(<<Size:32,Literal:Size/binary,Tail/binary>>) ->
[binary_to_term(Literal) | parse_literals(Tail)];

parse_literals(<<>>) -> [].

-define(tag_i, 1).
-define(tag_a, 2).

decode_tag(?tag_i) -> i;
decode_tag(?tag_a) -> a.

decode_int(Tag,B,Bs) when (B band 16#08) =:= 0 ->
%% N < 16 = 4 bits, NNNN:0:TTT
N = B bsr 4,
{{Tag,N},Bs};

decode_int(Tag,B,[]) when (B band 16#10) =:= 0 ->
%% N < 2048 = 11 bits = 3:8 bits, NNN:01:TTT, NNNNNNNN
Val0 = B band 2#11100000,
N = (Val0 bsl 3),
{{Tag,N},[]};

decode_int(Tag,B,Bs) when (B band 16#10) =:= 0 ->
%% N < 2048 = 11 bits = 3:8 bits, NNN:01:TTT, NNNNNNNN
[B1|Bs1] = Bs,
Val0 = B band 2#11100000,
N = (Val0 bsl 3) bor B1,
{{Tag,N},Bs1};
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decode_int(Tag,B,Bs) ->
{Len,Bs1} = decode_int_length(B,Bs),
{IntBs,RemBs} = take_bytes(Len,Bs1),
N = build_arg(IntBs),
{{Tag,N},RemBs}.

decode_lineinfo([B|Bs], F) ->
Tag = decode_tag(B band 2#111),
{{Tag,Num},RemBs} = decode_int(Tag,B,Bs),
case Tag of

i ->
[{F, Num} | decode_lineinfo(RemBs, F)];

a ->
[B2|Bs2] = RemBs,
Tag2 = decode_tag(B2 band 2#111),
{{Tag2,Num2},RemBs2} = decode_int(Tag2,B2,Bs2),
[{Num, Num2} | decode_lineinfo(RemBs2, Num2)]

end;
decode_lineinfo([],_) -> [].

decode_int_length(B, Bs) ->
{B bsr 5 + 2, Bs}.

take_bytes(N, Bs) ->
take_bytes(N, Bs, []).

take_bytes(N, [B|Bs], Acc) when N > 0 ->
take_bytes(N-1, Bs, [B|Acc]);

take_bytes(0, Bs, Acc) ->
{lists:reverse(Acc), Bs}.

build_arg(Bs) ->
build_arg(Bs, 0).

build_arg([B|Bs], N) ->
build_arg(Bs, (N bsl 8) bor B);

build_arg([], N) ->
N.

-module(world).
-export([hello/0]).

-include("world.hrl").

hello() -> ?GREETING.

-module(json_parser).
-export([parse_transform/2]).

parse_transform(AST, _Options) ->
json(AST, []).

-define(FUNCTION(Clauses), {function, Label, Name, Arity, Clauses}).

%% We are only interested in code inside functions.
json([?FUNCTION(Clauses) | Elements], Res) ->

json(Elements, [?FUNCTION(json_clauses(Clauses)) | Res]);
json([Other|Elements], Res) -> json(Elements, [Other | Res]);
json([], Res) -> lists:reverse(Res).
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%% We are interested in the code in the body of a function.
json_clauses([{clause, CLine, A1, A2, Code} | Clauses]) ->

[{clause, CLine, A1, A2, json_code(Code)} | json_clauses(Clauses)];
json_clauses([]) -> [].

-define(JSON(Json), {bin, _, [{bin_element
, _
, {tuple, _, [Json]}
, _
, _}]}).

%% We look for: <<"json">> = Json-Term
json_code([]) -> [];
json_code([?JSON(Json)|MoreCode]) -> [parse_json(Json) | json_code(MoreCode)];
json_code(Code) -> Code.

%% Json Object -> [{}] | [{Lable, Term}]
parse_json({tuple,Line,[]}) -> {cons, Line, {tuple, Line, []}};
parse_json({tuple,Line,Fields}) -> parse_json_fields(Fields,Line);
%% Json Array -> List
parse_json({cons, Line, Head, Tail}) -> {cons, Line, parse_json(Head),

parse_json(Tail)};
parse_json({nil, Line}) -> {nil, Line};
%% Json String -> <<String>>
parse_json({string, Line, String}) -> str_to_bin(String, Line);
%% Json Integer -> Intger
parse_json({integer, Line, Integer}) -> {integer, Line, Integer};
%% Json Float -> Float
parse_json({float, Line, Float}) -> {float, Line, Float};
%% Json Constant -> true | false | null
parse_json({atom, Line, true}) -> {atom, Line, true};
parse_json({atom, Line, false}) -> {atom, Line, false};
parse_json({atom, Line, null}) -> {atom, Line, null};

%% Variables, should contain Erlang encoded Json
parse_json({var, Line, Var}) -> {var, Line, Var};
%% Json Negative Integer or Float
parse_json({op, Line, ’-’, {Type, _, N}}) when Type =:= integer

; Type =:= float ->
{Type, Line, -N}.

%% parse_json(Code) -> io:format("Code: ~p~n",[Code]), Code.

-define(FIELD(Lable, Code), {remote, L, {string, _, Label}, Code}).

parse_json_fields([], L) -> {nil, L};
%% Label : Json-Term --> [{<<Label>>, Term} | Rest]
parse_json_fields([?FIELD(Lable, Code) | Rest], _) ->

cons(tuple(str_to_bin(Label, L), parse_json(Code), L)
, parse_json_fields(Rest, L)
, L).

tuple(E1, E2, Line) -> {tuple, Line, [E1, E2]}.
cons(Head, Tail, Line) -> {cons, Line, Head, Tail}.

str_to_bin(String, Line) ->
{bin
, Line
, [{bin_element

, Line
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, {string, Line, String}
, default
, default

}
]

}.

-module(json_test).
-compile({parse_transform, json_parser}).
-export([test/1]).

test(V) ->
<<{{

"name" : "Jack (\"Bee\") Nimble",
"format": {

"type" : "rect",
"widths" : [1920,1600],
"height" : (-1080),
"interlace" : false,
"frame rate": V

}
}}>>.

-module(stack_machine_compiler).
-export([compile/2]).

compile(Expression, FileName) ->
[ParseTree] = element(2,

erl_parse:parse_exprs(
element(2,

erl_scan:string(Expression)))),
file:write_file(FileName, generate_code(ParseTree) ++ [stop()]).

generate_code({op, _Line, ’+’, Arg1, Arg2}) ->
generate_code(Arg1) ++ generate_code(Arg2) ++ [add()];

generate_code({op, _Line, ’*’, Arg1, Arg2}) ->
generate_code(Arg1) ++ generate_code(Arg2) ++ [multiply()];

generate_code({integer, _Line, I}) -> [push(), integer(I)].

stop() -> 0.
add() -> 1.
multiply() -> 2.
push() -> 3.
integer(I) ->

L = binary_to_list(binary:encode_unsigned(I)),
[length(L) | L].

#include <stdio.h>
#include <stdlib.h>

char *read_file(char *name) {
FILE *file;
char *code;
long size;

file = fopen(name, "r");

if(file == NULL) exit(1);

fseek(file, 0L, SEEK_END);
size = ftell(file);
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code = (char*)calloc(size, sizeof(char));
if(code == NULL) exit(1);

fseek(file, 0L, SEEK_SET);

fread(code, sizeof(char), size, file);
fclose(file);
return code;

}

#define STOP 0
#define ADD 1
#define MUL 2
#define PUSH 3

#define pop() (stack[--sp])
#define push(X) (stack[sp++] = X)

int run(char *code) {
int stack[1000];
int sp = 0, size = 0, val = 0;
char *ip = code;

while (*ip != STOP) {
switch (*ip++) {
case ADD: push(pop() + pop()); break;
case MUL: push(pop() * pop()); break;
case PUSH:

size = *ip++;
val = 0;
while (size--) { val = val * 256 + *ip++; }
push(val);
break;

}
}
return pop();

}

int main(int argc, char *argv[])
{

char *code;
int res;

if (argc > 1) {
code = read_file(argv[1]);
res = run(code);
printf("The value is: %i\n", res);
return 0;

} else {
printf("Give a the file name of a byte code program as argument\n");
return -1;

}
}

#include <stdio.h>
#include <stdlib.h>

#define STOP 0
#define ADD 1
#define MUL 2
#define PUSH 3
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#define pop() (stack[--sp])
#define push(X) (stack[sp++] = (X))

typedef void (*instructionp_t)(void);

int stack[1000];
int sp;
instructionp_t *ip;
int running;

void add() { int x,y; x = pop(); y = pop(); push(x + y); }
void mul() { int x,y; x = pop(); y = pop(); push(x * y); }
void pushi(){ int x; x = (int)*ip++; push(x); }
void stop() { running = 0; }

instructionp_t *read_file(char *name) {
FILE *file;
instructionp_t *code;
instructionp_t *cp;
long size;
char ch;
unsigned int val;

file = fopen(name, "r");

if(file == NULL) exit(1);

fseek(file, 0L, SEEK_END);
size = ftell(file);
code = calloc(size, sizeof(instructionp_t));
if(code == NULL) exit(1);
cp = code;

fseek(file, 0L, SEEK_SET);
while ( ( ch = fgetc(file) ) != EOF )
{

switch (ch) {
case ADD: *cp++ = &add; break;
case MUL: *cp++ = &mul; break;
case PUSH:

*cp++ = &pushi;
ch = fgetc(file);
val = 0;
while (ch--) { val = val * 256 + fgetc(file); }

*cp++ = (instructionp_t) val;
break;

}
}

*cp = &stop;

fclose(file);
return code;

}

int run() {
sp = 0;
running = 1;

while (running) (*ip++)();
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return pop();
}

int main(int argc, char *argv[])
{

if (argc > 1) {
ip = read_file(argv[1]);
printf("The value is: %i\n", run());
return 0;

} else {
printf("Give a the file name of a byte code program as argument\n");
return -1;

}
}

-module(share).

-export([share/2, size/0]).

share(0, Y) -> {Y,Y};
share(N, Y) -> [share(N-1, [N|Y]) || _ <- Y].

size() ->
T = share:share(5,[a,b,c]),
{{size, erts_debug:size(T)},
{flat_size, erts_debug:flat_size(T)}}.

-module(send).
-export([test/0]).

test() ->
P2 = spawn(fun() -> p2() end),
P1 = spawn(fun() -> p1(P2) end),
{P1, P2}.

p2() ->
receive

M -> io:format("P2 got ~p", [M])
end.

p1(P2) ->
L = "hello",
M = {L, L},
P2 ! M,
io:format("P1 sent ~p", [M]).

Load Balancer.

-module(lb).
-export([start/0]).

start() ->
Workers = [spawn(fun worker/0) || _ <- lists:seq(1,10)],
LoadBalancer = spawn(fun() -> loop(Workers, 0) end),
{ok, Files} = file:list_dir("."),
Loaders = [spawn(fun() -> loader(LoadBalancer, F) end) || F <- Files],
{Loaders, LoadBalancer, Workers}.

loader(LB, File) ->
case file:read_file(File) of
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{ok, Bin} -> LB ! Bin;
_Dir -> ok

end,
ok.

worker() ->
receive

Bin ->
io:format("Byte Size: ~w~n", [byte_size(Bin)]),
garbage_collect(),
worker()

end.

loop(Workers, N) ->
receive
WorkItem ->

Worker = lists:nth(N+1, Workers),
Worker ! WorkItem,
loop(Workers, (N+1) rem length(Workers))

end.
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